International Journal of Pharma and Bio Sciences
 
 
    ISSN 0975-6299
www.ijpbs.net


ORIGINAL RESEARCH ARTICLE
Int J Pharm Bio Sci Volume 15 Issue 1, January - March, Pages:21-33

Effect of Triticum Aestivum (Wheat Grass) Against Nephrotoxicity Induced by Arsenic

Anita Nareda
DOI: http://dx.doi.org/10.22376/Ijpbs.2024.15.1.p21-33
Abstract:

Most of the inorganic arsenic consumed through contaminated drinking water is absorbed through the intestinal walls and thentransported to liver cells, thus causing toxic damage to the liver. Arsenic poisoning leads to irreversible damage to the kidneys.Arsenic damages the capillaries, tubules, and glomeruli of the kidney. Arsenic toxicity causes mild to severe necrosis anddegenerative changes in the kidney, with contracted glomeruli cells and increased Bowman's space. The present study has analyzedthe effect of oral treatment of T. aestivum leaf extract to counteract nephrotoxicity induced by arsenic intake in adult Swiss albinomice. Biochemical parameters were performed in kidney tissue after isolation from Swiss albino mice. Blood collection was donefrom the ventricle of the heart immediately after cervical dislocation and autopsy of mice. Kidney function tests were performedin serum isolated from blood. These animals were divided into various groups for experimentation. In the control group, puredouble distilled water was given as a vehicle. An oral dose of 20 ml/kg b.wt. has been provided in the Triticum aestivum treatmentgroup. An oral dose of 4.0 mg/kg b.wt has been provided to the Sodium arsenite (NaAsO2) intoxicated group.In combinationwith treated animals, T. aestivum was given orally before and after oral intoxication of NaAsO2. Activities of antioxidant enzymessuch as GSH glutathione), LPO (lipid peroxidation), enzymes indicating tissue damage such as ALP (alkaline phosphatase), ACP(acid phosphatase), LDH (lactate dehydrogenase), serum urea, serum creatinine, and serum uric acid content were calculated inthe kidney. The present study's findings indicate that arsenic intoxication substantially increases in serum creatinine, ACP, LPO,serum urea, and serum uric acid. In contrast, it substantially declines LDH, GSH, and ALP activities. Collective exposure of NaAsO2and T. aestivum depicted (i) a substantial decrease in LPO, creatinine, ACP, serum urea, and uric acid activities and (ii) an uplift inactivities of LDH, ALP, and GSH in contrast to NaAsO2 exposure. Results indicate that Wheatgrass protects against renal damagedue to arsenic toxicity. The present study concludes that T. aestivum can scavenge free radical species and peroxides produced inthe kidney of Swiss albino mice and show a modulatory effect against arsenic-induced nephrotoxicity.

Keywords: Arsenic, T. aestivum, LPO, GSH, LDH, urea, creatinine, uric acid
Full HTML:
  1. Shaji E, Santosh M, Sarath KV, Prakash P, Deepchand V, Divya BV. Arsenic groundwater contamination: A global synopsis focusing on the Indian Peninsula. Geosci Front. 2021;12(3):3. doi: 10.1016/j.gsf.2020.08.015.
  2. Mazumder DN. Effect of drinking arsenic contaminated water in children. Indian Pediatr. 2007;44(12):925-7. doi: 10.4103/0019-557X.104250, PMID 18175848.
  3. Majumdar KK, Guha Mazumder DN. Effect of drinking arsenic-contaminated water in children. Indian J Public Health. 2012;56(3):223-6. doi: 10.4103/0019-557X.104250, PMID 23229215.
  4. Orr SE, Bridges CC. Chronic kidney disease and exposure to nephrotoxic metals. Int J Mol Sci. 2017;18(5):1039. doi: 10.3390/ijms18051039, PMID 28498320.
  5. Gora RH, Kerketta P, Baxla SL, Toppo R, Prasad R, Patra PH et al. Ameliorative effect of Tephrosia purpurea in arsenic-induced nephrotoxicity in rats. Toxicol Int. 2014;21(1):78-83. doi: 10.4103/0971-6580.128807, PMID 24748739.
  6. Robles-Osorio ML, Sabath-Silva E, Sabath E. Arsenic-mediated nephrotoxicity. Ren Fail. 2015;37(4):542-7. doi: 10.3109/0886022X.2015.1013419, PMID 25703706.
  7. Peters BA, Hall MN, Liu X, Neugut YD, Pilsner JR, Levy D et al. Creatinine, arsenic metabolism, and renal function in an arsenic-exposed population in Bangladesh. PLOS ONE. 2014;9(12):e113760. doi: 10.1371/journal.pone.0113760, PMID 25438247.
  8. Peters BA, Hall MN, Liu X, Slavkovich V, Ilievski V, Alam S et al. Renal function is associated with indicators of arsenic methylation capacity in Bangladeshi adults. Environ Res. 2015;143(A):123-30. doi: 10.1016/j.envres.2015.10.001, PMID 26476787.
  9. Ferzand R, Gadahi JA, Saleha S, Ali Q. Histological and haematological disturbance caused by arsenic toxicity in mice model. Pak J Biol Sci. 2008;11(11):1405-13. doi: 10.3923/pjbs.2008.1405.1413, PMID 18817239.
  10. Hu Y, Li J, Lou B, Wu R, Wang G, Lu C et al. The role of reactive oxygen species in arsenic toxicity. Biomolecules. 2020;10(2):240. doi: 10.3390/biom10020240, PMID 32033297.
  11. Qamar A, Saeed F, Tahir-Nadeem M, Hussain AI, Niaz B, Khan AU et al. Exploring the phytochemical profile of green grasses with special reference to antioxidant properties. Int J Food Prop. 2018;21:1-11.
  12. Padalia S, Drabu S, Raheja I, Gupta A, Dhamija M. Multitude potential of wheatgrass juice (green blood): an overview. Chron Young Sci. 2010;1(2):23-8.
  13. Wangcharoen W, Phimphilai S. Chlorophyll and total phenolic contents, antioxidant activities and consumer acceptance test of processed grass drinks. J Food Sci Technol. 2016;53(12):4135-40. doi: 10.1007/s13197-016-2380-z, PMID 28115753.
  14. Chauhan M. A pilot study on wheat grass juice for its phytochemical, nutritional and therapeutic potential on chronic diseases. Int J Chem Stud. 2014;2(4):27-34.
  15. Eissa HA, Mohamed SS, Hussein AMS. Nutritional value and impact of wheatgrass juice (Green Blood Therapy) on increasing fertility in male albino rats. Bull Natl Res Cent. 2020;44(1):30. doi: 10.1186/s42269-020-0272-x.
  16. Khan MS, Parveen R, Mishra K, Tulsawani R, Ahmad S. Chromatographic analysis of wheatgrass extracts. J Pharm Bioallied Sci. 2015;7(4):267-71. doi: 10.4103/0975-7406.168023, PMID 26681880.
  17. Arya P, Kumar M. Chemoprevention by Triticum aestivum of mouse skin carcinogenesis induced by DMBA and croton oil - association with oxidative status. Asian Pac J Cancer Prev. 2011;12(1):143-8. PMID 21517247.
  18. Narada A, Kumar M. Efficacy of Triticum aestivum (Wheatgrass) against arsenic-induced hepatic damages. Asian J Pharm Clin Res. 2021:77-82. doi: 10.22159/ajpcr.2021.v14i4.40639.
  19. Cuendet M, Hostettmann K, Potterat O, Dyatmiko W. Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helv Chim Acta. 1997;80(4):1144-52. doi: 10.1002/hlca.19970800411.
  20. Kumar S, Sinha P. The calculation of Median Lethal Dose (LD50) and Maximum Permissible Dose (MPD) values of sodium arsenite in female Swiss albino mice. IOSR J Environ Sci Toxicol Food Technol. 2018;12(9):89-91. doi: 10.9790/2402-1209018991.
  21. Poddar S, Mukherjee P, Talukder G, Sharma A. Dietary protection by iron against clastogenic effects of short-term exposure to arsenic in mice in vivo. Food Chem Toxicol. 2000;38(8):735-7. doi: 10.1016/S0278-6915(00)00062-4, PMID 10908821.
  22. Sharma A, Sharma MK, Kumar M. Protective effect of Mentha piperita against arsenic-induced toxicity in liver of Swiss albino mice. Basic Clin Pharmacol Toxicol. 2007;100(4):249-57. doi: 10.1111/j.1742-7843.2006.00030.x, PMID 17371529.
  23. Sharma A, Sharma MK, Kumar M. Modulatory role of Emblica officinalis fruit extract against arsenic induced oxidative stress in Swiss albino mice. Chem Biol Interact. 2009;180(1):20-30. doi: 10.1016/j.cbi.2009.01.012, PMID 19428342.
  24. Moron J, Depierre JW, Mannlrivik B. Levels of GSH GR and GST activities in rat lungs and liver. Biochim Biophys Acta. 1979;582:67-78.
  25. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxidation in animal tissue by thio barbuturic acid reaction. Anal Biochem. 1979;95(2):351-8. doi: 10.1016/0003-2697(79)90738-3, PMID 36810.
  26. Wroblewski F, Sigma technical bulletin No. 500; 1967.
  27. Fiske CH, Subbarow Y. The colorimetric determination of phosphorus. J Biol Chem. 1925;66(2):375-400. doi: 10.1016/S0021-9258(18)84756-1.
  28. Murray RL. Non-protein nitrogen compounds. In: Clinical chemistry: theory analysis and co-relation. Publisher. Toronto: Cv. Mosby; 1984. p. 1230-68.
  29. Newman DJ, Price CP. Renal function and nitrogen metabolism. In Tietz textbook of clinical chemistry. 3rd ed Publisher: WB Saunders. Philadelphia; 1994. p. 1240-64.
  30. Bourke GJ, Daly LE, Mc Gilvary JC. Interpretation and uses of medical statistics. 3rd ed. Oxford: Blackwell Scientific Publications; 1985.
  31. Jozefczak M, Remans T, Vangronsveld J, Cuypers A. Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci. 2012;13(3):3145-75. doi: 10.3390/ijms13033145, PMID 22489146.
  32. Chen Y, Dong H, Thompson DC, Shertzer HG, Nebert DW, Vasiliou V. Glutathione defense mechanism in liver injury: insights from animal models. Food Chem Toxicol. 2013 Oct;60:38-44. doi: 10.1016/j.fct.2013.07.008, PMID 23856494.
  33. Patlolla AK, Barnes C, Yedjou C, Velma VR, Tchounwou PB. Oxidative stress, DNA damage, and antioxidant enzyme activity induced by hexavalent chromium in Sprague-Dawley rats. Environ Toxicol. 2009;24(1):66-73. doi: 10.1002/tox.20395, PMID 18508361.
  34. Minich DM, Brown BI. A review of dietary (phyto)nutrients for glutathione support. Nutrients. 2019;11(9):2073. doi: 10.3390/nu11092073, PMID 31484368.
  35. Bar-Sela G, Tsalic M, Fried G, Goldberg H. Wheat grass juice may improve hematological toxicity related to chemotherapy in breast cancer patients: A pilot study. Nutr Cancer. 2007;58(1):43-8. doi: 10.1080/01635580701308083, PMID 17571966.
  36. Kumar N, Iyer U. Impact of wheatgrass (Triticum aestivum L.) supplementation on atherogenic lipoproteins and menopausal symptoms in hyperlipidemic South Asian women - A randomized controlled study. J Diet Suppl. 2017;14(5):503-13. doi: 10.1080/19390211.2016.1267063, PMID 28121470.
  37. Z?otek U, Szymanowska U, Jakubczyk A, Sikora M, ?wieca M. Effect of arachidonic and jasmonic acid elicitation on the content of phenolic compounds and antioxidant and anti-inflammatory properties of wheatgrass (Triticum aestivum L.). Food Chem. 2019;288:256-61. doi: 10.1016/j.foodchem.2019.02.124, PMID 30902290.
  38. Kaur B, Kumar B, Sirhindi G, Guleria N, Kaur J. Phenolic biotransformations in Wheatgrass Juice after primary and secondary fermentation. Foods. 2023;12(8):1624. doi: 10.3390/foods12081624, PMID 37107419.
  39. George B, You D, Joy MS, Aleksunes LM. Xenobiotic transporters and kidney injury. Adv Drug Deliv Rev. 2017;116:73-91. doi: 10.1016/j.addr.2017.01.005, PMID 28111348.
  40. Peraza MA, Carter DE, Gandolfi AJ. Toxicity and metabolism of subcytotoxic inorganic arsenic in human renal proximal tubule epithelial cells (HK-2). Cell Biol Toxicol. 2003;19(4):253-64. doi: 10.1023/b:cbto.0000003970.60896.49, PMID 14686617.
  41. Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D et al. Arsenic: toxicity, oxidative stress, and human disease. J Appl Toxicol. 2011;31(2):95-107. doi: 10.1002/jat.1649, PMID 21321970.
  42. Ozturk M, Metin M, Altay V, Bhat RA, Ejaz M, Gul A et al. Arsenic and human health: genotoxicity, epigenomic effects, and cancer signaling. Biol Trace Elem Res. 2022;200(3):988-1001. doi: 10.1007/s12011-021-02719-w, PMID 33864199.
  43. Lentini P, Zanoli L, Granata A, Signorelli SS, Castellino P, Dell’Aquila R. Kidney and heavy metals – the role of environmental exposure [review]. Mol Med Rep. 2017;15(5):3413-9. doi: 10.3892/mmr.2017.6389, PMID 28339049.
  44. Flora SJS, Pachauri V. Arsenic, free radical and oxidative stress. In: Kretsinger RH, Uversky VN, Permyakov EA, editors. Encyclopedia of metalloproteins. New York: Springer; 2013.
  45. Mittal M, Flora SJ. Effects of individual and combined exposure to sodium arsenite and sodium fluoride on tissue oxidative stress, arsenic and fluoride levels in male mice. Chem Biol Interact. 2006;162(2):128-39. doi: 10.1016/j.cbi.2006.05.018, PMID 16828073.
  46. Mittal M, Flora SJ. Vitamin E supplementation protects oxidative stress during arsenic and fluoride antagonism in male mice. Drug Chem Toxicol. 2007;30(3):263-81. doi: 10.1080/01480540701380075, PMID 17613011.
  47. Sharmila Banu G, Kumar G, Murugesan AG. Effects of leaves extract of Ocimum sanctum L. on arsenic-induced toxicity in Wistar albino rats. Food Chem Toxicol. 2009;47(2):490-5. doi: 10.1016/j.fct.2008.12.004, PMID 19111884.
  48. Mershiba SD, Dassprakash MV, Saraswathy SD. Protective effect of naringenin on hepatic and renal dysfunction and oxidative stress in arsenic intoxicated rats. Mol Biol Rep. 2013;40(5):3681-91. doi: 10.1007/s11033-012-2444-8, PMID 23283742.
  49. Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med. 2009;30(1-2):1-12. doi: 10.1016/j.mam.2008.08.006, PMID 18796312.
  50. Chouchane S, Snow ET. In vitro effect of arsenical compounds on glutathione-related enzymes. Chem Res Toxicol. 2001;14(5):517-22. doi: 10.1021/tx000123x, PMID 11368549.
  51. Yang HC, Fu HL, Lin YF, Rosen BP. Pathways of arsenic uptake and efflux. Curr Top Membr. 2012;69:325-58. doi: 10.1016/B978-0-12-394390-3.00012-4, PMID 23046656.
  52. Mohan Y, Jesuthankaraj GN, Ramasamy Thangavelu N. Antidiabetic and antioxidant properties of Triticum aestivum in streptozotocin-induced diabetic rats. Adv Pharmacol Sci. 2013;2013:716073. doi: 10.1155/2013/716073, PMID 24416041.
  53. Adhikary M, Mukhopadhyay K, Sarkar B. Flavonoid?rich wheatgrass (Triticum aestivum L.) diet attenuates diabetes by modulating antioxidant genes in streptozotocin?induced diabetic rats. J Food Biochem. 2021;45(4):e13643. doi: 10.1111/jfbc.13643, PMID 33547672.
  54. Lushchak VI. Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids. 2012;2012:736837. doi: 10.1155/2012/736837, PMID 22500213.
  55. Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438. doi: 10.1155/2014/360438, PMID 24999379.
  56. Shyam C, Dhawan DK, Chadha VD. In vivo radioprotective effects of wheatgrass (Triticum aestivum) extract against X-irradaition-induced oxidative stress and apoptosis in peripheral blood lymphocytes in rats. Asian J Pharm Clin Res. 2018;11(4):239. doi: 10.22159/ajpcr.2018.v11i4.23741.
  57. Johri S, Khan N. Green Approach Using T. aestivum and P. betel in Treatment of haloperidol and phenyl hydrazine Induced anemia in Rats. IJRHS. 2021;10(9):94-102.
  58. Yao M, Yuan B, Wang X, Sato A, Sakuma K, Kaneko K et al. Synergistic cytotoxic effects of arsenite and tetrandrine in human breast cancer cell line MCF-7. Int J Oncol. 2017;51(2):587-98. doi: 10.3892/ijo.2017.4052, PMID 28656245.
  59. Ayala-Fierro F, Baldwin AL, Wilson LM, Valeski JE, Carter DE. Structural alterations in the rat kidney after acute arsine exposure. Lab Invest. 2000;80(1):87-97. doi: 10.1038/labinvest.3780012, PMID 10653007.
  60. Karim MR, Salam KA, Hossain E, Islam K, Ali N, Haque A et al. Interaction between chronic arsenic exposure via drinking water and plasma lactate dehydrogenase activity. Sci Total Environ. 2010;409(2):278-83. doi: 10.1016/j.scitotenv.2010.10.001, PMID 21035168.
  61. Barai M, Ahsan N, Paul N, Hossain K, Abdur Rashid M, Kato M et al. Amelioration of arsenic-induced toxic effects in mice by dietary supplementation of Syzygium cumini leaf extract. Nagoya J Med Sci. 2017;79(2):167-77. doi: 10.18999/nagjms.79.2.167, PMID 28626252.
  62. Valentovic M, Williams P, Carl J 3rd, Rankin GO. Urinary enzyme excretion as a parameter for detection of acute renal damage mediated by N-(3,5-dichlorophenyl)succinimide (NDPS) in Fischer 344 rats. J Appl Toxicol. 1994;14(4):281-5. doi: 10.1002/jat.2550140407, PMID 7963241.
  63. Peters M, Jones T, Monks T, Serrine L. Cytotoxicity and cell-proliferation induced by the nephrocarcinogen hydroquinone and its nephrotoxic metabolite 2,3,5-(tris-glutathion-S-yl)hydroquinone. Carcinogenesis. 1998;18(12):2393-401.
  64. Verma RJ, Vasu A, Saiyed AA. Arsenic toxicity in mice and its possible amelioration. J Environ Sci (China). 2004;16(3):447-53. PMID 15272721.
  65. Jahangirnejad R, Goudarzi M, Kalantari H, Najafzadeh H, Rezaei M. Subcellular organelle toxicity caused by arsenic nanoparticles in isolated rat hepatocytes. Int J Occup Environ Med. 2020;11(1):41-52. doi: 10.15171/ijoem.2020.1614, PMID 31905194.
  66. Chattopadhyay S, Pal Ghosh SP, Ghosh D, Debnath J. Effect of dietary co-administration of sodium selenite on sodium arsenite-induced ovarian and uterine disorders in mature albino rats. Toxicol Sci. 2003;75(2):412-22. doi: 10.1093/toxsci/kfg194, PMID 12883085.
  67. Rizwan S, Naqshbandi A, Farooqui Z, Khan AA, Khan F. Protective effect of dietary flaxseed oil on arsenic-induced nephrotoxicity and oxidative damage in rat kidney. Food Chem Toxicol. 2014;68:99-107. doi: 10.1016/j.fct.2014.03.011, PMID 24642383.
  68. Sharma S, Shrivastav BR, Shrivastav A. Effect of wheatgrass juice on lipid peroxidation, SOD activity and catalase activity in lung cancer during chemotherapy. IJAR. 2016;4(9):1384-90. doi: 10.21474/IJAR01/1738.
  69. Lakshmi BVS, Sudhakar M, Nireesha G. Modification of mercury-induced biochemical alterations by Triticum aestivum Linn in rats. Indian J Physiol Pharmacol. 2014;58(4):423-36. PMID 26215012.
  70. Tripathi R, Agarwal S, Rizvi SI, Mishra N. The antioxidant efficacy of Wheatgrass (Triticum aestivum) on mercuric chloride (HgCl2)- Induced Oxidative Stress in Rat Model. Curr Res Nutr Food Sci. 2021;9(2):450-64. doi: 10.12944/CRNFSJ.9.2.09.
  71. Hebbani AV, Bulle S, Kanu VR, Balachandrababu Malini A, Reddy VD, Chakravarthula VN. Nephro-protective activity of wheatgrass juice against alcohol-induced oxidative damage in rats. Toxicol Mech Methods. 2020;30(9):679-86. doi: 10.1080/15376516.2020.1810837, PMID 32811246.
  72. Noman AS, Dilruba S, Mohanto NC, Rahman L, Khatun Z, Riad W et al. Arsenic-induced histological alterations in various organs of mice. J Cytol Histol. 2015;6(3):323. doi: 10.4172/2157-7099.1000323, PMID 26740907.
  73. Ijaz MU, Jabeen F, Ashraf A, Imran M, Ehsan N, Samad A et al. Evaluation of possible protective role of chrysin against arsenic-induced nephrotoxicity in rats. Toxin Rev. 2022;41(4):1237-45. doi: 10.1080/15569543.2021.1993261.
  74. Xu Y, Zou Z, Liu Y, Wang Q, Sun B, Zeng Q et al. miR-191 is involved in renal dysfunction in arsenic-exposed populations by regulating inflammatory response caused by arsenic from burning arsenic-contaminated coal. Hum Exp Toxicol. 2020;39(1):37-46. doi: 10.1177/0960327119874423, PMID 31775542.
  75. Weiner ID, Mitch WE, Sands JM. Urea and ammonia metabolism and the control of renal nitrogen excretion. Clin J Am Soc Nephrol. 2015;10(8):1444-58. doi: 10.2215/CJN.10311013, PMID 25078422.
  76. Macedo E, Mehta R. Clinical Approach to the Diagnosis of Acute Kidney Injury. In book: National Kidney Foundation Primer on Kidney Diseases. 2014; 294-303: 9781455746170. doi: 10.1016/B978-1-4557-4617-0.00033-9.
  77. Saafi-Ben Salah EB, El Arem A, Louedi M, Saoudi M, Elfeki A, Zakhama A et al. Antioxidant-rich date palm fruit extract inhibits oxidative stress and nephrotoxicity induced by dimethoate in rat. J Physiol Biochem. 2012;68(1):47-58. doi: 10.1007/s13105-011-0118-y, PMID 21983806.
  78. El-Boshy ME, Refaat B, Qasem AH, Khan A, Ghaith M, Almasmoum H et al.The remedial effect of Thymus vulgaris extract against lead toxicity-induced oxidative stress, hepatorenal damage, immunosuppression, and hematological disorders in rats. Environ Sci Pollut Res Int. 2019;26(22):22736-46. doi: 10.1007/s11356-019-05562-8, PMID 31172438.
  79. Jalili C, Roshankhah S, Salahshoor MR. Falcaria vulgaris extract attenuates ethanol-induced renal damage by reducing oxidative stress and lipid peroxidation in rats. J Pharm Bioallied Sci. 2019;11(3):268-75. doi: 10.4103/jpbs.JPBS_134_19, PMID 31555034.
  80. Singh AP, Goel RK, Kaur T. Mechanisms pertaining to arsenic toxicity. Toxicol Int. 2011;18(2):87-93. doi: 10.4103/0971-6580.84258, PMID 21976811.
  81. Kumari M. Impacts of arsenic trioxide in some renal parameters in Oryctolagus cuniculus. The Biobrio. 2015;2(1&2):78-82.
  82. Prabu SM, Muthumani M. Silibinin ameliorates arsenic induced nephrotoxicity by abrogation of oxidative stress, inflammation and apoptosis in rats. Mol Biol Rep. 2012;39(12):11201-16. doi: 10.1007/s11033-012-2029-6, PMID 23070905.
  83. Saxena PN, Anand S, Saxena N, Bajaj P. Effect of arsenic trioxide on renal functions and its modulation by Curcuma aromatica leaf extract in albino rat. J Environ Biol. 2009;30(4):527-31. PMID 20120491.
  84. Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A. 1981;78(11):6858-62. doi: 10.1073/pnas.78.11.6858, PMID 6947260.
  85. Becker BF. Towards the physiological function of uric acid. Free Radic Biol Med. 1993;14(6):615-31. doi: 10.1016/0891-5849(93)90143, PMID 8325534-.
  86. Kurajoh M, Fukumoto S, Yoshida S, Akari S, Murase T, Nakamura T et al. Uric acid shown to contribute to increased oxidative stress level independent of xanthine oxidoreductase activity in MedCity21 health examination registry. Sci Rep. 2021;11(1):7378. doi: 10.1038/s41598-021-86962-0, PMID 33795813.
  87. Sanders AP, Mazzella MJ, Malin AJ, Hair GM, Busgang SA, Saland JM et al. Combined exposure to lead, cadmium, mercury, and arsenic and kidney health in adolescents age 12-19 in NHANES 2009-2014. Environ Int. 2019;131:104993. doi: 10.1016/j.envint.2019.104993, PMID 31326826.
  88. Gao W, Tong L, Zhao S, Sun M, Fang J, Xu Y et al. Exposure to cadmium, lead, mercury, and arsenic and uric acid levels: results from NHANES 2007-2016. Biol Trace Elem Res. 2023;201(4):1659-69. doi: 10.1007/s12011-022-03309-0, PMID 35809185.
  89. Shankar P, Singh RV, Srivastava A, Kumar A. Assessment of arsenic (As)-Induced HepatoNephro alterations, enzymatic inhibition and Neurobehavioral instability in Charles foster rats. Res Square. 2023 [preprint]. doi: 10.21203/rs.3.rs-2723253/v1.
  90. Eldamaty H. Protective effects of barley and wheat grasses on nephrotoxicity in rats and some biochemical parameters induced by tramadol. Egypt J Nutr Health. 2020;15(1):67-83. doi: 10.21608/ejnh.2020.117339.
  91. Kowalska I, Pecio L, Ciesla L, Oleszek W, Stochmal A. Isolation, chemical characterization, and free radical scavenging activity of phenolics from Triticum aestivum L. aerial parts. J Agric Food Chem. 2014;62(46):11200-8. doi: 10.1021/jf5038689, PMID 25356666.
  92. Parit SB, Dawkar VV, Tanpure RS, Pai SR, Chougale AD. Nutritional Quality and Antioxidant Activity of Wheatgrass (Triticum aestivum) Unwrap by Proteome Profiling and DPPH and FRAP assays. J Food Sci. 2018;83(8):2127-39. doi: 10.1111/1750-3841.14224, PMID 30059150.
  93. Das P, Mandal S, Gangopadhyay S, Das K, Mitra AG, Dasgupta S et al. Antioxidative and anticarcinogenic activities of methylpheophorbide a, isolated from wheat grass (Triticum aestivum Linn.). Nat Prod Res. 2016;30(4):474-7. doi: 10.1080/14786419.2015.1022775, PMID 25782530.
  94. Tandon S, Arora A, Singh S, Monga J, Arora S. Antioxidant Profiling of Triticum aestivum (wheatgrass) and its antiproliferative Activity in MCF-7 Breast Cancer Cell Line. J Pharm Res. 2011;4(12):4601-4.
  95. Jangle N, Padmanabhan P. Evaluation of phytochemicals, reducing power, antioxidant activity and in-vitro lipid peroxidation activity of wheat grass juice. Int J Pharm Sci Res;32:3436-40.
  96. Savic IM, Savic Gajic IM. Optimization of ultrasound-assisted extraction of polyphenols from wheatgrass (Triticum aestivum L.). J Food Sci Technol. 2020;57(8):2809-18. doi: 10.1007/s13197-020-04312-w, PMID 32624589.
  97. Durairaj V, Hoda M, Shakya G, Babu SP, Rajagopalan R. Phytochemical screening and analysis of antioxidant properties of aqueous extract of wheatgrass. Asian Pac J Trop Med. 2014;7S1:S398-404. doi: 10.1016/S1995-7645(14)60265-0, PMID 25312157.
  98. Christudas S, Santiagu SI, Veeramuthu D, Naif AA, Paul A, Savarimuthu I. Antioxidant and free radical scavenging effects of β-amyrin isolated from S. cochinchinensis Moore. leaves. Ind Crops Prod. 2014;61(2):510-6.
  99. Lou-Bonafonte JM, Martínez-Beamonte R, Sanclemente T, Surra JC, Herrera-Marcos LV, Sanchez-Marco J et al. Current insights into the biological action of squalene. Mol Nutr Food Res. 2018;62(15):e1800136. doi: 10.1002/mnfr.201800136, PMID 29883523.
  100. Ojha S, Javed H, Azimullah S, Haque ME. Beta-caryophyllene, a phytocannabinoid, attenuates oxidative stress, neuroinflammation, and glial activation and salvages dopaminergic neurons in a rat model of Parkinson's disease. Mol Cell Biochem. 2016;418(1-2):59-70. doi: 10.1007/s11010-016-2733-y, PMID 27316720.
  101. Ove TA, Khatun AA, Saifullah SB, Ahmed M. Effectiveness of solvent extraction on phytochemicals and antioxidant activities from fresh and dried wheatgrass. Eur J Nutr Food Saf. 2021;13(2):1-10. doi: 10.9734/ejnfs/2021/v13i230370.
  102. Chomchan R, Siripongvutikorn APDS, Puttarak DP, Rattanapon MR. Investigation of phytochemical constituents, phenolic profiles and antioxidant activities of ricegrass juice compared to wheatgrass juice. Funct Foods Health Dis. 2016;6(12):822-35. doi: 10.31989/ffhd.v6i12.290.
  103. Pérez-Gálvez A, Viera I, Roca M. Carotenoids and chlorophylls as antioxidants. Antioxidants (Basel). 2020;9(6):505. doi: 10.3390/antiox9060505, PMID 32526968.
  104. Damiri M, Reza G, Motamedzadegan A, Safari R, Shahidi SA, Ghorbani A. Evaluation of stability, physicochemical and antioxidant properties of extracted chlorophyll from Persian clover (Trifolium resupinatum L.). J Food Meas Charact. 2021;15:327-40.
[Download PDF]
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy
Pharmaceutical Fields
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmaceutics
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Novel drug delivery system
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Nanotechnology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacognosy
© Copyright 2009-2015 IJPBS, India. All rights reserved. Specialized online journals by ubijournal. Website by Ubitech Solutions
         Home I Contact I Terms & Conditions