International Journal of Pharma and Bio Sciences
 
 
    ISSN 0975-6299
www.ijpbs.net


ORIGINAL RESEARCH ARTICLE
Int J Pharm Bio Sci Volume 14 Issue 3, July-September 2023, Pages:21-41

Introduction to Versatile Nanocarrier System; Exploring Their Morphology, Method of Preparation, Characterization Technique & Application in Different Field

Ms. Pooja S Murkute, Dr. Mohammed Ismail Mouzam, Dr. Abubakar Salam Bawazir, Mr. Nakul P Kathar and Mr. Krishna K Deore
DOI: http://dx.doi.org/10.22376/ijpbs.2023.14.3.p21-41
Abstract:

Nanomedicine is an emerging tool in biological science with a more prior application against no different disease conditions. The prefix 'nano' is a Greek prefix meaning something very small and near to around one thousand millionth of a meter (10−9 m). The American physicist and Nobel Prize laureate Richard Feynman introduced the concept of nanotechnology in 1959. During the annual meeting of the American Physical Society, Feynman presented a lecture entitled "There's Plenty of Room at the Bottom" at the California Institute of Technology (Caltech). This topic mainly emphasizes various Nano size ranges of medicine, especially Nanocarriers as Rigid & Non-rigid systems. Non-rigid nanocarrier systems are primarily of relatively soft structures that an external force can easily disrupt. Rigid nanoparticles are understood to retain the same form. Nanomedicines are employed in all different areas across the world in the field of Agriculture, Medicines & Cosmetics; Nanomedicines are best employed or designed for critical disease conditions such as Cancer, Diseases associated with the Brain, etc. Nanomedicine plays an active role in their therapeutic & diagnostic application. The selection of matrix materials depends on many factors such as Biocompatibility and toxicity, Degree of biodegradability, surface characteristics (charge and permeability), Antigenicity of the final product, Inherent properties of the drug (aqueous solubility and stability). The current topic particularly emphasizes different methods of preparation available in the market for Nanomedicine, Various methods of its characterization, such as Microscopy- Based Nanoparticle Characterization & Spectroscopy-Based Characterization Techniques. At the same time, High-resolution transmission electron microscopy imaging is an excellent methodology for differencing between micro or nano-crystalline diphasic and rigid polycrystalline and single crystalline phases. This methodology has been employed specifically for the surface study of nanostructure using the different chemical compositions of atoms and molecules in Nanoparticles to image the surface/body at the microscopic level.

Keywords: Liposomes, Polymeric Nanoparticles, Solvent Diffusion method, High-resolution Transmission electron microscope, X-ray Photoelectron Spectroscopy, Dendrimers.
Full HTML:
  1. Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: from chemical–biological applications to nanomedicine. Molecules. 2019;25(1):112. doi: 10.3390/molecules25010112, PMID 31892180.
  2. Bhatia S. Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. In: Natural polymer drug delivery systems. Berlin: Springer; 2016. p. 33-93. doi: 10.1007/978-3-319-41129-3_2.
  3. Singh G, Majeed A, Singh R, George N, Singh G, Gupta S et al. CuAACensembled 1,2,3-triazole linked nanogels for targeted drug delivery: a review. RSC Adv. 2023;13(5):2912-36. doi: 10.1039/d2ra05592a. PMID 36756399.
  4. Horikoshi S. A. T. O. S. H. I, &Serpone N. I. C. K. 2013. Introduction to nanoparticles. Microwaves in nanoparticle synthesis: fundamentals and applications, 1-24. doi: 10.1002/9783527648122.ch1.
  5. Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2019;12(7):908-31. doi: 10.1016/j.arabjc.2017.05.011.
  6.  McNeil SE. Challenges for nanoparticle characterization. In: Characterization of nanoparticles intended for drug delivery. Humana Press; 2011. p. 9-15. doi: 10.1007/978-1-60327-198-1_2, PMID 21116950.
  7. Campbell J, Burkitt S, Dong N, Zavaleta C. Nanoparticle characterization techniques. In: Nanoparticles for biomedical applications. Elsevier; 2020. p. 129-44. doi: 10.1016/B978-0-12-816662-8.00009-6.
  8. Byakodi M, Shrikrishna NS, Sharma R, Bhansali S, Mishra Y, Kaushik A et al. Emerging 0D, 1D, 2D, and 3D nanostructures for efficient point-of-care biosensing. BiosensBioelectron X. 2022;12:100284. doi: 10.1016/j.biosx.2022.100284. PMID 36448023.
  9. Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R. Nanoparticle: an overview of preparation and characterization. J Appl Pharm Sci, (Issue). 2011:228-34.
  10. Nasrollahzadeh M, Sajjadi M, Sajadi SM, Issaabadi Z. Green nanotechnology. Interface Sci Technol. 2019;28. doi: 10.1016/B978-0-12-813586-0.00005-5.
  11. Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014;9(1):247. doi: 10.1186/1556-276X-9-247, PMID 24994950.
  12. Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM. Biological applications of quantum dots. Biomaterials. 2007;28(31):4717-32. doi: 10.1016/j.biomaterials.2007.07.014, PMID 17686516.
  13. Yin H, Lin H, Zong Y, Wang XD. The recent advances in C60 micro/nanostructures and their optoelectronic applications. Org Electron. 2021;93:106142. doi: 10.1016/j.orgel.2021.106142.
  14. Pan Y, Liu X, Zhang W, Liu Z, Zeng G, Shao B et al. Advances in photocatalysis based on fullerene C60 and its derivatives: properties, mechanism, synthesis, and applications. Appl Cat B. 2020;265:118579. doi: 10.1016/j.apcatb.2019.118579.
  15. Hansen K, Zettergren H. Clusters of fullerenes: structures and dynamics. J PhysChem A. 2022;126(44):8173-87. doi: 10.1021/acs.jpca.2c05366, PMID 36321908.
  16. Caminade AM, Laurent R, Majoral JP. Characterization of dendrimers. Adv Drug Deliv Rev. 2005;57(15):2130-46. doi: 10.1016/j.addr.2005.09.011, PMID 16289434.
  17. Roovers J, Comanita B. Dendrimers and dendrimer-polymer hybrids. In: Branched polymers; 1999. p. 179-228. doi: 10.1007/3-540-68310-0_4.
  18. Aidala KE, Panzer MJ, Anikeeva PO, Halpert JE, Bawendi MG, Bulovi? V. Morphology of contact printed colloidal quantum dots in organic semiconductor films: implications for QD?LEDs. Phys Status Solidi (C). 2011;8(1):120-3. doi: 10.1002/pssc.201000667.
  19. Lee KH. Quantum dots: a quantum jump for molecular imaging? J Nucl Med. 2007;48(9):1408-10. doi: 10.2967/jnumed.107.042069, PMID 17785725.
  20. Negri V, Pacheco-Torres J, Calle D, López-Larrubia P. Carbon nanotubes in biomedicine. Surface-modified nanobiomaterials for electrochemical and biomedicine applications; 2020. p. 177-217. doi: 10.1007/978-3-030-55502-3_6.
  21. Duan Y, Dhar A, Patel C, Khimani M, Neogi S, Sharma P et al. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Adv. 2020;10(45):26777-91. doi: 10.1039/D0RA03491F, PMID 35515778.
  22. Jäger T, Mokos A, Prasianakis NI, Leyer S. Pore-Level Multiphase Simulations of Realistic Distillation Membranes for water Desalination. Membranes. 2022;12(11). doi: 10.3390/membranes12111112, PMID 36363667.
  23. Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon. 2022;8(5):e09394. doi: 10.1016/j.heliyon.2022.e09394, PMID 35600452.
  24. Leung AWY, Amador C, Wang LC, Mody UV, Bally MB. What drives innovation: the Canadian touch on liposomal therapeutics. Pharmaceutics. 2019;11(3):124. doi: 10.3390/pharmaceutics11030124, PMID 30884782.
  25. Aqel A, El-Nour KMMA, Ammar RAA, Al-Warthan A. Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab J Chem. 2012;5(1):1-23. doi: 10.1016/j.arabjc.2010.08.022.
  26. Mishra V, Bansal K. K, Verma A, Yadav N, Thakur S, Sudhakar K, &Rosenholm J. M. (2018). Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics, 10(4), 191.https://doi.org/10.3390/pharmaceutics10040191.
  27. Newton AM, Kaur S. Solid lipid nanoparticles for skin and drug delivery: methods of preparation and characterization techniques and applications. In: Nanoarchitectonics in biomedicine. William Andrew Publishing; 2019. p. 295-334. doi: 10.1016/B978-0-12-816200-2.00015-3.
  28. Sukumar UK, Bhushan B, Dubey P, Matai I, Sachdev A, Packirisamy G. Emerging applications of nanoparticles for lung cancer diagnosis and therapy. Int Nano Lett. 2013;3(1):45. doi: 10.1186/2228-5326-3-45.
  29. Sastri KT, Radha GV, Pidikiti S, Vajjhala P. Solid lipid nanoparticles: preparation techniques, their characterization, and an update on recent studies. J app pharm sci. 2020;10(6):126-41. doi: 10.7324/JAPS.2020.10617.
  30. Malik MA, Wani MY, Hashim MA. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials. Arab J Chem. 2012;5(4):397-417. doi: 10.1016/j.arabjc.2010.09.027.
  31. Zhang H. Thin-film hydration followed by extrusion method for liposome preparation. In:. Methods in Molecular Biology (Clifton, N.J.). New York: Humana Press; 2017. p. 17-22. doi: 10.1007/978-1-4939-6591-5_2, PMID 27837527.
  32. Available from: https://www.sciencedirect.com/topics/nursing-and-health-professions/energy-dispersive-x-ray-spectroscopy [cited 24/6/2023].
  33. Karlsson J, Vaughan HJ, Green JJ. Biodegradable Polymeric Nanoparticles for Therapeutic Cancer Treatments. Annu Rev ChemBiomol Eng. 2018;9:105-27. doi: 10.1146/annurev-chembioeng-060817-084055, PMID 29579402.
  34. Cheaburu-Yilmaz CN, Karasulu HY, Yilmaz O. Nanoscaled dispersed systems used in drug-delivery applications. PolymNanomaterNanotherapeutics. 2019:437-68.
  35. Mendoza-Muñoz N, Quintanar-Guerrero D, Allémann E. The impact of the salting-out technique on the preparation of colloidal particulate systems for pharmaceutical applications. Recent Pat Drug DelivFormul. 2012;6(3):236-49. doi: 10.2174/187221112802652688, PMID 22734871.
  36. Zhao Z, Li Y, Xie MB. Silk fibroin-based nanoparticles for drug delivery. Int J Mol Sci. 2015;16(3):4880-903. doi: 10.3390/ijms16034880, PMID 25749470.
  37. Yadav M, Pasarkar N, Naikwadi A, Mahanwar P. A review on microencapsulation, thermal energy storage applications, thermal conductivity and modification of polymeric phase change material for thermal energy storage applications. Polym Bull. 2023;80(6):5897-927. doi: 10.1007/s00289-022-04369-x.
  38. Zhang J, Xie Z, Zhang N, Zhong J. Chapter 13. Nanosuspension drug delivery system: preparation, characterization, postproduction processing, dosage form, and application. In: Micro and nano technologies, nanostructures for drug delivery. Elsevier; 2017. p. 413-43. doi: 10.1016/B978-0-323-46143-6.00013-0.
  39. Haggag YA, Faheem AM. Evaluation of nano spray drying as a method for drying and formulation of therapeutic peptides and proteins. Front Pharmacol. 2015;6:140. doi: 10.3389/fphar.2015.00140, PMID 26217227.
  40. Dobry DE, Settell DM, Baumann JM, Ray RJ, Graham LJ, Beyerinck RA. A model-based methodology for spray-drying process development. J Pharm Innov. 2009;4(3):133-42. doi: 10.1007/s12247-009-9064-4, PMID 20234866.
  41. Zhang C, Wu L, De Perrot M, Zhao X. Carbon Nanotubes: a Summary of Beneficial and Dangerous Aspects of an Increasingly Popular Group of Nanomaterials. Front Oncol. 2021;11:693814. doi: 10.3389/fonc.2021.693814, PMID 34386422.
  42. Kammari R, Das N. G, & Das S.K. 2017. Nanoparticulate systems for therapeutic and diagnostic applications. Emerging nanotechnologies for diagnostics, drug delivery and medical devices, 105-144.10.1016/b978-0-323-42978-8.00006-1.
  43. Rane AV, Kanny K, Abitha VK, Thomas S. Methods for synthesis of nanoparticles and fabrication of nanocomposites. In: Synthesis of inorganic nanomaterials. Woodhead publishing; 2018. p. 121-39. doi: 10.1016/B978-0-08-101975-7.00005-1.
  44. Khan LU, Khan ZU. Bifunctional nanomaterials: magnetism, luminescence and multimodal biomedical applications. Complex magnetic nanostructures: synthesis, assembly and applications; 2017. p. 121-71. doi: 10.1007/978-3-319-52087-2_4.
  45. Titus D. Characterization and applications of nanoparticles. doi: 10.1016/b978-0-08-102579-6.00012-5.
  46. Available from: https://www.scimed.co.uk/education/sem-scanning-electron-microscopy/ [cited 24/6/2023].
  47. Available from: https://www.sciencedirect.com/topics/nursing-and-health-professions/energy-dispersive-x-ray-spectroscopy.
  48. Asmatulu R, Khan WS. Chapter 13. Characterization of electro spun nanofibers. In: Synthesis and applications of ElectrospunNanofibers; 2019. p. 257-81. doi: 10.1016/B978-0-12-813914-1.00013-4.
  49. Available from: https://www.nanoandmore.com/what-is-atomic-force-microscopy [cited 24/6/2023].
  50. Padhi S, Behera A. Biosynthesis of Silver Nanoparticles: synthesis, mechanism, and characterization. In: Agri-waste and microbes for production of sustainable nanomaterials. Elsevier; 2022. p. 397-440. doi: 10.1016/B978-0-12-813914-1.00013-4.
  51. Lucovsky G, Misra V. Gate oxides: properties and characterization. Encyclopedia of materials. Sci Technol. 2011:3478-86. doi: 10.1016/B978-0-12-823575-1.00008-1.
  52. Jinschek JR, Yucelen E, Freitag B, Calderon HA, Steinbach A. Still ”plenty of room at the bottom” for aberration-corrected TEM. Micros Today. 2011;19(3):10-4. doi: 10.1017/S155192951100023X.
  53. Nasrollahzadeh M, Atarod M, Sajjadi M, Sajadi SM, Issaabadi Z. Plant-Mediated Green Synthesis of Nanostructures: Mechanisms, Characterization, and Applications. Interface Sci Technol. 2019;28. doi: 10.1016/B978-0-12-813586-0.00006-7.
  54. Manaia EB, Abuçafy MP, Chiari-Andréo BG, Silva BL, Oshiro Junior JAO, Chiavacci LA. Physicochemical characterization of drug nanocarriers. Int J Nanomedicine. 2017;12:4991-5011. doi: 10.2147/IJN.S133832, PMID 28761340.
  55. Hu B, He M, Chen B. Magnetic nanoparticle sorbents. In: Solid-phase extraction. Elsevier; 2020. p. 235-84. doi: 10.1016/B978-0-12-816906-3.00009-1.
  56. Mukherjee A, Sasikala WD. Drug–DNA intercalation: from discovery to the molecular mechanism. Adv Protein ChemStruct Biol. 2013;92:1-62. doi: 10.1016/B978-0-12-411636-8.00001-8, PMID 23954098.
  57. Pate K, Safier P. Chemical metrology methods for CMP quality. In: Advances in chemical mechanical planarization (CMP). Woodhead Publishing; 2022. p. 355-83. doi: 10.1016/B978-0-12-821791-7.00017-4.
  58. Taheri A, Dinarvand R, Atyabi F, Ahadi F, Nouri FS, Ghahremani MH et al.. Enhanced anti-tumoral activity of methotrexate-human serum albumin conjugated nanoparticles by targeting with Luteinizing Hormone-Releasing Hormone (LHRH) peptide. Int J Mol Sci. 2011;12(7):4591-608. doi: 10.3390/ijms12074591. PMID 21845098.
  59. Kianpour S, Ebrahiminezhad A, Heidari R, Khalvati B, Shahbazi MA, Negahdaripour M et al. Enterobacter sp. mediated synthesis of biocompatible nanostructured Iron-Polysaccharide complexes: a nutritional supplement for iron-deficiency anemia. Biol Trace Elem Res. 2020;198(2):744-55. doi: 10.1007/s12011-020-02101-2, PMID 32157632.
  60. Parang Z, Keshavarz A, Farahi S, Elahi SM, Ghoranneviss M, Parhoodeh S. Fluorescence emission spectra of silver and silver/cobalt nanoparticles. Sci Iran. 2012;19(3):943-7. doi: 10.1016/j.scient.2012.02.026.
  61. Zhang L, Li Z, Zhang Y, Paau MC, Hu Q, Gong X et al. High-performance liquid chromatography coupled with mass spectrometry for analysis of ultrasmall palladium nanoparticles. Talanta. 2015;131:632-9. doi: 10.1016/j.talanta.2014.08.032, PMID 25281151.
  62. N SN, N B, B N VH, Sankaran R, D RD. Performance of Cutting Tool with Cross-Chevron Surface Texture Filled with Green Synthesized Aluminium Oxide Nanoparticles. Sci Rep. 2019;9(1):17803. doi: 10.1038/s41598-019-54346-0, PMID 31780736.
  63. Chakraborty P, Pradeep T. The emerging interface of mass spectrometry with materials. NPG Asia Mater. 2019;11(1):s41427-019-0149-3. doi: 10.1038/s41427-019-0149-3.
  64. Page J, Berríos S, Rufas JS, Parra MT, Suja JA, Heyting C et al. The pairing of X and Y chromosomes during meiotic prophase in the marsupial species Thylamyselegans is maintained by a dense plate developed from their axial elements. J Cell Sci. 2003;116(3):551-60. doi: 10.1242/jcs.00252, PMID 12508115.
  65. Marbella LE, Millstone JE. NMR techniques for noble metal nanoparticles. Chem Mater. 2015;27(8):2721-39. doi: 10.1021/cm504809c.
  66. Vakurov A, Pchelintsev NA, Gibson T, Millner P. Development of polymeric nanoparticles showing tuneable pH-responsive precipitation. J Nanopart Res. 2012;14(12):1-9. doi: 10.1007/s11051-012-1302-x.
  67. Kano S, Tada T, Majima Y. Nanoparticle characterization based on STM and STS. ChemSoc Rev. 2015;44(4):970-87. doi: 10.1039/C4CS00204K, PMID 25306971.
  68. Fernández-Arias M, Zimbone M, Boutinguiza M, Del Val J, Riveiro A, Privitera V et al. Synthesis and deposition of Ag nanoparticles by combining laser ablation and electrophoretic deposition techniques. Coatings. 2019;9(9):571. doi: 10.3390/coatings9090571.
  69. Wang W, Ding X, Xu Q, Wang J, Wang L, Lou X. Zeta-potential data reliability of gold nanoparticle biomolecular conjugates and its application in sensitive quantification of surface absorbed protein. Colloids Surf B Biointerfaces. 2016;148:541-8. doi: 10.1016/j.colsurfb.2016.09.021, PMID 27690243.
  70. Thakar MA, SaurabhJha S, Phasinam K, Manne R, Qureshi Y, Hari Babu VV. X ray diffraction (XRD) analysis and evaluation of antioxidant activity of copper oxide nanoparticles synthesized from leaf extract of Cissusvitiginea. Mater Today Proc. 2022;51:319-24. doi: 10.1016/j.matpr.2021.05.410.
  71. Anjum S, Ishaque S, Fatima H, Farooq W, Hano C, Abbasi BH et al. Emerging applications of nanotechnology in healthcare systems: grand challenges and perspectives. Pharmaceuticals (Basel). 2021;14(8):707. doi: 10.3390/ph14080707, PMID 34451803.
  72. Pramanik P, Krishnan P, Maity A, Mridha N, Mukherjee A, Rai V. Application of nanotechnology in agriculture. In: Environmental nanotechnology. Vol. 4; 2020. p. 317-48. doi: 10.1007/978-3-030-26668-4_9.
  73. Singh T, Shukla S, Kumar P, Wahla V, Bajpai VK, Rather IA. Application of nanotechnology in food science: perception and overview. Front Microbiol. 2017;8:1501. doi: 10.3389/fmicb.2017.01501, PMID 28824605.
  74. Raj S, Jose S, Sumod US, Sabitha M. Nanotechnology in cosmetics: opportunities and challenges. J Pharm Bioallied Sci. 2012;4(3):186-93. doi: 10.4103/0975-7406.99016, PMID 22923959.
  75. Wong YWH, Yuen CWM, Leung MYS, Ku SKA, Lam HLI. Selected applications of nanotechnology in textiles. Autex Res J. 2006;6(1):1-8.
  76. Talawadekar A, Hande R, Mandake MB 2022. Nanotechnology: Fueling the Chemical Industry’s Future. 362508583.
  77. Qu F, Geng R, Liu Y, Zhu J. Advanced nanocarrier- and microneedle-based transdermal drug delivery strategies for skin diseases treatment. Theranostics. 2022;12(7):3372-406. doi: 10.7150/thno.69999, PMID 35547773.
  78. Tiwari N, Osorio?Blanco ER, Sonzogni A, Esporrín?Ubieto D, Wang H, Calderón M. Nanocarriers for skin applications: where do we stand? AngewChemInt Ed Engl. 2022;61(3):e202107960. doi: 10.1002/anie.202107960, PMID 34487599.
  79. Li X, Tsibouklis J, Weng T, Zhang B, Yin G, Feng G et al. Nano carriers for drug transport across the blood–brain barrier. J Drug Target. 2017;25(1):17-28. doi: 10.1080/1061186X.2016.1184272, PMID 27126681.
  80. Dünnhaupt S, Kammona O, Waldner C, Kiparissides C, Bernkop-Schnürch A. Nano-carrier systems: strategies to overcome the mucus gel barrier. Eur J Pharm Biopharm. 2015;96:447-53. doi: 10.1016/j.ejpb.2015.01.022, PMID 25712487.
  81. Ardestani MS, Zaheri Z, Mohammadzadeh P, Bitarafan-Rajabi A, Ghoreishi SM. Novel manganese carbon quantum dots as a nano-probe: facile synthesis, characterization and their application in naproxen delivery (Mn/CQD/SiO2@naproxen). Bioorg Chem. 2021;115:105211. doi: 10.1016/j.bioorg.2021.105211, PMID 34364048.
  82. Huang X, Ma Y, Li Y, Han F, Lin W. Targeted drug delivery systems for kidney diseases. Front BioengBiotechnol. 2021;9:683247. doi: 10.3389/fbioe.2021.683247, PMID 34124026.
[Download PDF]
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy
Pharmaceutical Fields
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmaceutics
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Novel drug delivery system
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Nanotechnology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacognosy
© Copyright 2009-2015 IJPBS, India. All rights reserved. Specialized online journals by ubijournal. Website by Ubitech Solutions
         Home I Contact I Terms & Conditions