International Journal of Pharma and Bio Sciences
 
 
    ISSN 0975-6299
www.ijpbs.net


ORIGINAL RESEARCH ARTICLE
Int J Pharm Bio Sci Volume 14 Issue 3, July-September 2023, Pages:7-16

Cancer Systems Biology and Epidemiology: Target Identification, Combination Therapy, and Personalized Treatment in Cancer Medicine.

Chitra Rani Chauhan, Satya Prakash Singh, Anju Gahlot, Atul Kumar Singh, Arun Prakash Dwivedi, Rahul Sachan and Desh Nidhi Singh
DOI: http://dx.doi.org/10.22376/ijpbs.2023.14.3.b7-16
Abstract:

Cancer signaling networks are complex, involving gene regulation, signaling, and cell metabolism. Alterations in these networks caused by different mutations can lead to malignancy. We aim to evaluate these networks' computational models that allow us to understand their complex behavior better. This study aims to validate the correlation between cancer signaling pathways' complexity (clustering coefficient) and cancer epidemiological data sets, including cancer incidence, death rate, and lifetime risk. These results support the hypothesis that network complexity directly indicates cancer risk. Understanding the differential behavior of regulatory networks during health, disease, and in response to drugs is crucial for enhancing drug development efforts, identifying new targets, delineating off-target effects, predicting disease, developing combinatorial drug regimens, and developing personalized treatments targeted at the molecular level.

Keywords: Cancer Epidemiology; clustering coefficient; Betweenness centrality; Combinatorial Drug Therapy; Personalized Medicine; Network biology
Full HTML:
  1. Peres MA, MacphersonLMD, Weyant RJ, Daly B, Venturelli R, Mathur MR, et al. Oral diseases: a global public health challenge. Lancet. 2019;394(10194):249-60. doi: 10.1016/S0140-6736(19)31146-8, PMID 31327369.
  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA CancerJ Clin. 2021;71(3):209-49. doi: 10.3322/caac.21660, PMID 33538338.
  3. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet?Tieulent J, Jemal A. Global cancer statistics, 2012. CA CancerJ Clin. 2015;65(2):87-108. doi: 10.3322/caac.21262, PMID 25651787.
  4. Arnold M, Singh D, Laversanne M, Vignat J, Vaccarella S, Meheus F, et al. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol. 2022;158(5):495-503. doi: 10.1001/jamadermatol.2022.0160, PMID 35353115.
  5. Jemal A, Bray F, Forman D, O’Brien M, Ferlay J, Center M, et al. Cancer burden in Africa and opportunities for prevention. Cancer. 2012;118(18):4372-84. doi: 10.1002/cncr.27410, PMID 22252462.
  6. Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: state of the art and future directions. CA CancerJ Clin. 2020;70(4):299-312. doi: 10.3322/caac.21613, PMID 32478924.
  7. Chang S, Parker SL, Pham T, Buzdar AU, Hursting SD. Inflammatory breast carcinoma incidence and survival. Cancer.1975-1992. Cancer: Interdisciplinary International Journal of the American Cancer Society;82(12):2366-72. doi: 10.1002/(SICI)1097-0142(19980615)82:12<2366::AID-CNCR10>3.0.CO;2-N.
  8. Drost J, Clevers H. Organoids in cancer research. NatRev Cancer. 2018;18(7):407-18. doi: 10.1038/s41568-018-0007-6, PMID 29692415.
  9. Eroles P, Bosch A, Pérez-Fidalgo JA, Lluch A. Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. Cancer TreatRev. 2012;38(6):698-707. doi: 10.1016/j.ctrv.2011.11.005, PMID 22178455.
  10. Block KI, Gyllenhaal C, Lowe L, Amedei A, AminARMR, Amin A, et al., editors. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin CancerBiol. 2015;35;Suppl:S276-304. doi: 10.1016/j.semcancer.2015.09.007, PMID 26590477.
  11. Le Tourneau C, DelordJP, Gonçalves A, Gavoille C, Dubot C, Isambert N, et al. Molecularly targeted therapy based on tumor molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomized, controlled phase 2 trial. LancetOncol. 2015;16(13):1324-34. doi: 10.1016/S1470-2045(15)00188-6, PMID 26342236.
  12. Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. NatRev Drug Discov. 2019;18(3):175-96. doi: 10.1038/s41573-018-0006-z, PMID 30622344.
  13. Yang Q, Guo N, Zhou Y, Chen J, Wei Q, Han M. The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advances in targeted therapy. Acta Pharm Sin B. 2020;10(11):2156-70. doi: 10.1016/j.apsb.2020.04.004, PMID 33304783.
  14. Rejhová A, Opattová A, ?umová A, Slíva D, Vodi?ka P. Natural compounds and combination therapy in colorectal cancer treatment. EurJ MedChem. 2018;144:582-94. doi: 10.1016/j.ejmech.2017.12.039, PMID 29289883.
  15. Kitamura N, Sento S, Yoshizawa Y, Sasabe E, Kudo Y, Yamamoto T. Current trends and prospects of molecular targeted therapy in head and neck squamous cell carcinoma. IntJ MolSci. 2020;22(1):240. doi: 10.3390/ijms22010240, PMID 33383632.
  16. Debela DT, Muzazu SG, Heraro KD, Ndalama MT, Mesele BW, Haile DC, et al. New approaches and procedures for cancer treatment: current perspectives. SAGE OpenMed. 2021;9:20503121211034366. doi: 10.1177/20503121211034366, PMID 34408877.
  17. HuangRX, ZhouPK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct TargetTher. 2020;5(1):60. doi: 10.1038/s41392-020-0150-x, PMID 32355263.
  18. Steeghs N, Nortier JW, Gelderblom H. Small molecule tyrosine kinase inhibitors in treating solid tumors: an update of recent developments. Ann SurgOncol. 2007;14(2):942-53. doi: 10.1245/s10434-006-9227-1, PMID 17103252.
  19. Shukla S, Robey RW, Bates SE, Ambudkar SV. Sunitinib (Sutent, SU11248), a small-molecule receptor tyrosine kinase inhibitor, blocks the function of the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and ABCG2. Drug MetabDispos. 2009;37(2):359-65. doi: 10.1124/dmd.108.024612, PMID 18971320.
  20. Kontermann RE, Brinkmann U. Bispecific antibodies. Drug DiscovToday. 2015;20(7):838-47. doi: 10.1016/j.drudis.2015.02.008, PMID 25728220.
  21. RedmanJM, HillEM, AlDeghaither D, WeinerLM. Mechanisms of action of therapeutic antibodies for cancer. MolImmunol. 2015;67(2 Pt A):28-45. doi: 10.1016/j.molimm.2015.04.002, PMID 25911943.
  22. Oun R, Moussa YE, Wheate NJ. The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans. 2018;47(19):6645-53. doi: 10.1039/c8dt00838h, PMID 29632935.
  23. Bodnar RJ. Anti-angiogenic drugs: involvement in cutaneous side effects and wound-healing complication. Adv WoundCare. 2014;3(10):635-46. doi: 10.1089/wound.2013.0496, PMID 25302138.
  24. TullemansBME, HeemskerkJWM, KuijpersMJE. Acquired platelet antagonism: off?target antiplatelet effects of malignancy treatment with tyrosine kinase inhibitors. J ThrombHaemost. 2018;16(9):1686-99. doi: 10.1111/jth.14225, PMID 29975003.
  25. Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang Z, et al. Glioma targeted therapy: insight into future of molecular approaches. Mol Cancer. 2022;21(1):39. doi: 10.1186/s12943-022-01513-z, PMID 35135556.
  26. Markham A. Selpercatinib: First Approval. Drugs. 2020;80(11):1119-24. doi: 10.1007/s40265-020-01343-7, PMID 32557397.
  27. Sharma R, Kadife E, Myers M, Kannourakis G, Prithviraj P, Ahmed N. Determinants of resistance to VEGF-TKI and immune checkpoint inhibitors in metastatic renal cell carcinoma. J ExpClin Cancer Res. 2021;40(1):186. doi: 10.1186/s13046-021-01961-3, PMID 34099013.
  28. XieYH, ChenYX, FangJY. A comprehensive review of targeted therapy for colorectal cancer. Signal Transduct TargetTher. 2020;5(1):22. doi: 10.1038/s41392-020-0116-z, PMID 32296018.
  29. Kreeger PK, Lauffenburger DA. Cancer systems biology: a network modeling perspective. Carcinogenesis. 2010;31(1):2-8. doi10.1093/Marcin/bgp261, PMID 19861649.
  30. Santarpia L, Lippman SM, El-Naggar AK. Targeting the MAPK–RAS–RAF signaling pathway in cancer therapy. Expert OpinTherTargets. 2012;16(1):103-19. doi: 10.1517/14728222.2011.645805, PMID 22239440.
  31. Chai JY, Sugumar V, Alshawsh MA, Wong WF, Arya A, Chong PP, et al. The role of a smoothened-dependent and-independent hedgehog signaling pathway in tumorigenesis. Biomedicines. 2021;9(9):1188. doi: 10.3390/biomedicines9091188, PMID 34572373.
  32. Liang JL, Luo GF, Chen WH, Zhang XZ. Recent advances in engineered materialsforimmunotherapy?involved combination cancer therapy. AdvMater. 2021;33(31):e2007630. doi: 10.1002/adma.202007630, PMID 34050564.
  33. Falzone L, Salomone S, Libra M. Evolution of pharmacological cancer treatments at the turn of the third millennium. Front Pharmacol. 2018;9:1300. doi: 10.3389/par.2018.01300, PMID 30483135.
  34. Mei Z, Huang J, Qiao B, Lam AK-y. Immune checkpoint pathways in immunotherapy for head and neck squamous cell carcinoma. IntJ OralSci. 2020;12(1):16. doi: 10.1038/s41368-020-0084-8, PMID 32461587.
  35. King TD, Suto MJ, Li Y. Thewnt/β?catenin signaling pathway: A potential therapeutic target in the treatment of triple-negative breast cancer. J CellBiochem. 2012;113(1):13-8. doi: 10.1002/jcb.23350, PMID 21898546.
  36. Mohajan S, Jaiswal PK, Vatanmakarian M, Yousefi H, Sankaralingam S, Alahari SK, et al. Hippo pathway: regulation, deregulation and potential therapeutic targets in cancer. Cancer Lett. 2021;507:112-23. doi: 10.1016/j.canlet.2021.03.006, PMID 33737002.
  37. Dey A, Varelas X, GuanKL. Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. NatRev Drug Discov. 2020;19(7):480-94. doi: 10.1038/s41573-020-0070-z, PMID 32555376.
  38. Liu AM, Xu MZ, Chen J, Poon RT, Luk JM. Targeting YAP and Hippo signaling pathway in liver cancer. Expert OpinTherTargets. 2010;14(8):855-68. doi: 10.1517/14728222.2010.499361, PMID 20545481.
  39. Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. NatRevCancer. 2012;12(4):237-51. doi: 10.1038/nrc3237, PMID 22437869.
  40. Ali A, Murani E, Hadlich F, Liu X, Wimmers K, Ponsuksili S. Prenatal skeletal muscle transcriptome analysis reveals novel microRNA-mRNA networks associated with intrauterine growth restriction in pigs. Cells. 2021;10(5):1007. doi: 10.3390/cells10051007, PMID 33923344.
  41. Breitkreutz D, Hlatky L, Rietman E, Tuszynski JA. Molecular signaling network complexity is correlated with cancer patient survivability. Proc Natl AcadSci U S A. 2012;109(23):9209-12. doi: 10.1073/pans.1201416109, PMID 22615392.
  42. Grafahrend-Belau E, Weise S, Koschützki D, Scholz U, Junker BH, Schreiber F. MetaCrop: a detailed database of crop plant metabolism. Nucleic AcidsRes. 2008;36(Database issue)(suppl_1):D954-D8:D954-8. doi: 10.1093/nar/gkm835, PMID 17933764.
  43. Rask-Andersen M, Almén MS, Schiöth HB. Trends in the exploitation of novel drug targets. NatRev Drug Discov. 2011;10(8):579-90. doi: 10.1038/nrd3478, PMID 21804595.
  44. ArrellDK, Terzic A. Network systems biology for drug discovery. ClinPharmacolTher. 2010;88(1):120-5. doi: 10.1038/clpt.2010.91, PMID 20520604.
  45. 45, Oldham S, Fulcher B, Parkes L, Arnatkevic??t? A, Suo C, Fornito A. Consistency and differences between centrality measures across distinct classes of networks. PLOSONE. 2019;14(7):e0220061. doi: 10.1371/journal.pone.0220061, PMID 31348798.
  46. You Y, Lai X, Pan Y, Zheng H, Vera J, Liu S, et al. Artificial intelligence in cancer target identification and drug discovery. Signal Transduct TargetTher. 2022;7(1):156. doi: 10.1038/s41392-022-00994-0, PMID 35538061.
  47. Zitnik M, Nguyen F, Wang B, Leskovec J, Goldenberg A, Hoffman MM. Machine learning for integrating data in biology and medicine: principles, practice, and opportunities. Inf Fusion. 2019;50:71-91. doi: 10.1016/j.inffus.2018.09.012, PMID 30467459.
  48. Lesterhuis WJ, Bosco A, Millward MJ, Small M, Nowak AK, Lake RA. Dynamic versus static biomarkers in cancer immune checkpoint blockade: unraveling complexity. NatRev Drug Discov. 2017;16(4):264-72. doi: 10.1038/nrd.2016.233, PMID 28057932.
  49. Sonawane AR, Weiss ST, Glass K, Sharma A. Network medicine in the age of big biomedical data. Front Genet. 2019;10:294. doi: 10.3389/gene.2019.00294, PMID 31031797.
  50. Carracedo-Reboredo P, Liñares-Blanco J, Rodríguez-Fernández N, Cedrón F, Novoa FJ, Carballal A, et al. A review on machine learning approaches and trends in drug discovery. Comp StructBiotechnolJ. 2021;19:4538-58. doi: 10.1016/j.csbj.2021.08.011, PMID 34471498.
  51. Volpicelli G, Elbarbary M, Blaivas M, Lichtenstein DA, Mathis G, Kirkpatrick AW, et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive CareMed. 2012;38(4):577-91. doi: 10.1007/s00134-012-2513-4, PMID 22392031.
  52. Hunter JC, Gurbani D, Ficarro SB, Carrasco MA, Lim SM, Choi HG, et al. In situ selectivity profiling and crystal structure of SML-8-73-1, an active site inhibitor of oncogenic K-Ras G12C. Proc Natl AcadSci U S A. 2014;111(24):8895-900. doi: 10.1073/pans.1404639111, PMID 24889603.
  53. Rizzo S, Petrella F, Buscarino V, De Maria F, Raimondi S, Barberis M, et al. CT radiogenic characterization of EGFR, K-RAS, and ALK mutations in non-small cell lung cancer. EurRadiol. 2016;26(1):32-42. doi: 10.1007/s00330-015-3814-0, PMID 25956936.
  54. Morkel M, Riemer P, Bläker H, Sers C. Similar but different: distinct roles for KRAS and BRAF oncogenes in colorectal cancer development and therapy resistance. Oncotarget. 2015;6(25):20785-800. doi: 10.18632/oncotarget.4750, PMID 26299805.
  55. Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. NatRev Drug Discov. 2011;10(9):671-84. doi: 10.1038/nrd3504, PMID 21878982.
  56. Koretzky GA, Myung PS. Positive and negative regulation of T-cell activation by adaptor proteins. NatRevImmunol. 2001;1(2):95-107. doi: 10.1038/35100523, PMID 11905825.
  57. Ijaz M, Wang F, Shahbaz M, Jiang W, Fathy AH, Nesa EU. The role of Grb2 in cancer and peptides as Grb2 antagonists. ProteinPeptLett. 2018;24(12):1084-95. doi: 10.2174/0929866525666171123213148, PMID 29173143.
  58. Korc M, Friesel RE. The role of fibroblast growth factors in tumor growth. CurrCancerDrugTargets. 2009;9(5):639-51. doi: 10.2174/156800909789057006, PMID 19508171.
  59. Ashok G, Miryala SK, Anbarasu A, Ramaiah S. Integrated systems biology approach using gene network analysis to identify the important pathways and new potential drug targets for Neuroblastoma. Gene Rep. 2021;23:101101. doi: 10.1016/j.genrep.2021.101101.
  60. Eccles SA, Aboagye EO, Ali S, Anderson AS, Armes J, Berditchevski F, et al. Critical research gaps and translational priorities for successfully preventing and treating breast cancer. Breast Cancer Res. 2013;15(5):R92. doi: 10.1186/bcr3493, PMID 24286369.
  61. Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007;26(22):3291-310. doi: 10.1038/sj.onc.1210422, PMID 17496923.
  62. Hortobagyi GN, de la Garza Salazar J, Pritchard K, Amadori D, Haidinger R, Hudis CA, et al. The global breast cancer burden: variations in epidemiology and survival. ClinBreastCancer. 2005;6(5):391-401. doi: 10.3816/cbc.2005.n.043, PMID 16381622.
  63. Claus EB, Risch N, Thompson WD. Genetic analysis of breast cancer in cancer and steroid hormone study. AmJ HumGenet. 1991;48(2):232-42. PMID 1990835.
  64. Liu F, Yang X, Geng M, Huang M. Targeting ERK, an Achilles’ heel of the MAPK pathway, in cancer therapy. Acta Pharm Sin B. 2018;8(4):552-62. doi: 10.1016/j.apsb.2018.01.008, PMID 30109180.
  65. Leary M, Heerboth S, Lapinska K, Sarkar S. Sensitization of drug-resistant cancer cells: a matter of combination therapy. Cancers. 2018;10(12):483. doi: 10.3390/cancers10120483, PMID 30518036.
  66. Suraweera A, O’Byrne KJ, Richard DJ. Combination therapy with histone deacetylase inhibitors (HDACi) for cancer treatment: achieving the full therapeutic potential of HDACi. Front Oncol. 2018;8:92. doi: 10.3389/fonc.2018.00092, PMID 29651407.
  67. Murciano-Goroff YR, Warner AB, Wolchok JD. The future of cancer immunotherapy: microenvironment-targeting combinations. Cell Res. 2020;30(6):507-19. doi: 10.1038/s41422-020-0337-2, PMID 32467593.
  68. Kong X, Qi Y, Wang X, Jiang R, Wang J, Fang Y, et al.Nanoparticle drugdeliverysystems and theirapplications as targetedtherapies for triple-negativebreastcancer. Prog MaterSci. 2023;134:101070. doi: 10.1016/j.pmatsci.2023.101070.
  69. Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA. Targeted drug delivery strategies for precision medicines. NatRevMater. 2021;6(4):351-70. doi: 10.1038/s41578-020-00269-6, PMID 34950512.
  70. Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct TargetTher. 2020;5(1):8. doi: 10.1038/s41392-020-0110-5, PMID 32296030.
  71. Singh AP, Biswas A, Shukla A, Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct TargetTher. 2019;4(1):33. doi: 10.1038/s41392-019-0068-3, PMID 31637012.
  72. Weston AD, Hood L. Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. J ProteomeRes. 2004;3(2):179-96. doi: 10.1021/pr0499693, PMID 15113093.
  73. Zhang A, Sun H, Wang P, Han Y, Wang X. Future perspectives of personalized medicine in traditional Chinese medicine: a systems biology approach. ComplementTher Med. 2012;20(1-2):93-9. doi: 10.1016/j.ctim.2011.10.007, PMID 22305254.
  74. Rick J, Marshall P, Yuill N, editors. Beyond one-size-fits-all: how interactive tabletops support collaborative learning. In:Proceedings of the 10th international conference on interaction design and children; 2011:109-17. doi: 10.1145/1999030.1999043.
  75. Diamandis M, White NM, Yousef GM. Personalized medicine: marking a new epoch in cancer patient management. Mol Cancer Res. 2010;8(9):1175-87. doi: 10.1158/1541-7786.MCR-10-0264, PMID 20693306.
  76. Gottlieb A, Stein GY, Ruppin E, Sharan R. PREDICT: a method for inferring novel drug indications applying to personalized medicine. MolSystBiol. 2011;7(1):496. doi: 10.1038/msb.2011.26, PMID 21654673.
[Download PDF]
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy
Pharmaceutical Fields
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmaceutics
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Novel drug delivery system
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Nanotechnology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacognosy
© Copyright 2009-2015 IJPBS, India. All rights reserved. Specialized online journals by ubijournal. Website by Ubitech Solutions
         Home I Contact I Terms & Conditions