International Journal of Pharma and Bio Sciences
 
 
    ISSN 0975-6299
www.ijpbs.net


ORIGINAL RESEARCH ARTICLE
Int J Pharm Bio Sci Volume 13 Issue 3, July-September, Pages:25-31

Impact of Pomegranate Juice, Antidiabetic Therapy on Glycemic Control and Lipid Subfraction Status

Basavaraj. S. Aski N.S. Biradar, S.S. Walvekar, G.V. Naregal and Nikil.N. Biradar
DOI: http://dx.doi.org/10.22376/Ijpbs.2022.13.3.b25-31
Abstract:

Over the last decade, studies have linked the beneficial effect of pomegranate juice on glycemic control. They have a significant secretory influence on beta-cell, carbohydrate, and lipid metabolism turnover in preventing and treating type ii diabetes. However, hypoglycaemic drugs have side effects such as lactic acidosis and abdominal discomfort. Hence, we aimed for a new treatment regime that included oral antidiabetic drugs and pomegranate juice, which works as an anti-oxidant and a potential antidiabetic agent. The study included randomly chosen145 type 2 diabetes mellitus male subjects and 36 healthy male participants. The study was carried out in two stages. Initially, all subjects were allowed to be on their respective antidiabetic drugs/insulin and to have a regular check-up of blood glucose twice a week for four weeks, after which they were redistributed into three groups, one of which was given pomegranate juice along with their respective antidiabetic drugs. After a 4-week run-in period, patients improved their ability to self-monitor blood glucose values and a wash-out period of 3 weeks, during which oral hypoglycaemic drugs and insulin were discontinued. The subjects were randomly assigned to follow the treatment protocol. Subjects received either an antidiabetic medicine or insulin, while the others received 200 ml of pomegranate fruit juice every day, along with antidiabetic therapy assigned to two-month treatment intervals. Glycemic rate and lipid profile changes were observed at the end of the period. The subjects with Pomegranate Juice with drug treatment showed a significant reduction in the levels of HbAlc (6.2 ± 0.2% vs. 8.2 ± 0.3%.)), LDL cholesterol concentration (120.61 ± 12.81, vs 136.23 ± 16.58 mg/dl P < 0.05), and Phospotidyl choline (27.20 ± 1.98 vs 22.80 ± 2.20 mg/cc. P < 0.05 as compared to other groups. This study has observed that pomegranate juice combined with an antidiabetic therapy regime has outstanding potential advantages in glucose control and a significant reduction in dyslipidemia and increased phospholipids levels compared to insulin or drug alone. These changes are linked to disease progression in numerous tissues. Pomegranate juice therapy may lower the need for diabetic medication or insulin, and natural diet fruits may impact pancreatic cell activation.

Keywords: Pomegranate juice. PC (Phosphotidyl Cholin). MDM (Male type 2 diabetes Mellitus) .TC (Total cholesterol).
Full HTML:

REFERENCES

 

  1. .  K. Jyothsna. The Study of Effect of Pomegranate Juice on Type 2 Diabetes Meliltus. Journal of Dental and Medical Sciences (IOSR-JDMS).2017; 16 ( 4) : 28-30.
  2. Saleem A. Banihani, Reham A. Fashtaky, Seham M. Makahleh, Zeyad J. El-Akawi, Omar F. Khabour, Nesreen. Et. al.   Effect of fresh pomegranate juice on the level of melatonin, insulin, and fasting serum glucose in healthy individuals and people with impaired fasting glucose.   Food Sci Nutr. 2020; 8:567–574.
  3. Ling S, Feng T, Ke Q, Fan N, Li L, Li Z, et al. Metformin inhibits proliferation and enhances chemosensitivity of intrahepatic cholangiocarcinoma cell lines. Oncol Rep. 2014;31(6):2611-18.  doi: 10.3892/or.2014.3151, PMID [CrossRef], Google Scholar.
  4. Khan F, Ray S, Craigie AM, Kennedy G, Hill A, Barton KL, et al. Lowering of oxidative stress improves endothelial function in healthy subjects with habitually low intake of fruit and vegetables: A randomized controlled trial of antioxidant- and polyphenol-rich blackcurrant juice. Free Radic Biol Med. 2014; 72:232-7.  doi: 10.1016/j.freeradbiomed.2014.04.006, PMID [CrossRef], Google Scholar.
  5. Cheng DM, Pogrebnyak N, Kuhn P, Krueger CG, Johnson WD, Raskin I. Development and phytochemical characterization of high polyphenol red lettuce with anti-diabetic properties. PLOS ONE. 2014;9(3):e91571.   doi: 10.1371/journal.pone.0091571. (PMC Free article). PMID [CrossRef], Google Scholar.
  6. Mathew AS, Capel-Williams GM, Berry SE, Hall WL. Acute effects of pomegranate extract on postprandial lipaemia, vascular function and blood pressure. Plant Foods Hum Nutr. 2012;67(4):351-7. doi: 10.1007/s11130-012-0318-9, PMID [CrossRef], Google Scholar
  7. Banihani S, Swedan S, Alguraan Z. Pomegranate and type 2 diabetes. Nutr Res. 2013;33(5):341-8.  doi: 10.1016/j.nutres.2013.03.003, PMID [CrossRef], Google Scholar.
  8. Aviram M, Dornfeld L. Pomegranate juice consumption inhibits serum angiotensin converting enzyme activity and reduces systolic blood pressure. Atherosclerosis. 2001;158(1):195-8.  doi: 10.1016/s0021-9150(01)00412-9, PMID [CrossRef], Google Scholar.
  9. Kelishadi R, Gidding SS, Hashemi M, Hashemipour M, Zakerameli A, Poursafa P. Acute and long term effects of grape and pomegranate juice consumption on endothelial dysfunction in pediatric metabolic syndrome. J Res Med Sci. 2011;16(3):245-53. (PMC Free article). PMID 22091240, Google Scholar.
  10. Rosenblat M, Volkova N, Aviram M. Pomegranate juice (PJ) consumption antioxidative properties on mouse macrophages, but not PJ beneficial effects on macrophage cholesterol and triglyceride metabolism, are mediated via PJ-induced stimulation of macrophage PON2. Atherosclerosis. 2010;212(1):86-92.  doi: 10.1016/j.atherosclerosis.2010.04.039, PMID [CrossRef], Google Scholar.
  11. Danesi F, Ferguson LR. Could pomegranate juice help in the control of inflammatory diseases? Nutrients. 2017;9(9):958. doi: 10.3390/nu9090958, PMID 28867799.
  12. Ginsberg Y, Khatib N, Saadi N, Ross MG, Weiner Z, Beloosesky R. Maternal pomegranate juice attenuates maternal inflammation-induced fetal brain injury by inhibition of apoptosis, neuronal nitric oxide synthase, and NF-κB in a rat model. Am J Obstet Gynecol. 2018;219(1):113.e1-9. doi: 10.1016/j.ajog.2018.04.040, PMID 29709511.
  13. Husari A, Hashem Y, Zaatari G, El Sabban M. Pomegranate Juice Prevents the Formation of Lung Nodules Secondary to Chronic Cigarette Smoke Exposure in an Animal Model. Oxid Med Cell Longev. 2017;2017:Article ID 6063201, Article ID. doi: 10.1155/2017/6063201, PMID 29333211.
  14. Rosenblat M, Volkova N, Borochov-Neori H, Judeinstein S, Aviram M. Anti-atherogenic properties of date vs. pomegranate polyphenols: the benefits of the combination. Food Funct. 2015;6(5):1496-509. doi: 10.1039/c4fo00998c, PMID 25811166.
  15. Sahebkar A, Ferri C, Giorgini P, Bo S, Nachtigal P, Grassi D. Effects of pomegranate juice on blood pressure: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2017;115:149-61. doi: 10.1016/j.phrs.2016.11.018, PMID 27888156.
  16. Asgary S, Keshvari M, Sahebkar A, Sarrafzadegan N. Pomegranate consumption and blood pressure: a review. Curr Pharm Des. 2017;23(7):1042-50. doi: 10.2174/1381612822666161010103339, PMID 27748197.
  17. Banihani SA, Makahleh SM, El-Akawi Z, Al-Fashtaki RA, Khabour OF, Gharibeh MY, Saadah NA, Al-Hashimi FH, Al-Khasieb NJ. Fresh pomegranate juice ameliorates insulin resistance, enhances β-cell function, and decreases fasting serum glucose in type 2 diabetic patients. Nutr Res. 2014;34(10):862-7. doi: 10.1016/j.nutres.2014.08.003, PMID 25223711.
  18. Kennedy L, Walshe K, Hadden DR, Weaver JA, Buchanan KD. The effect of intensive dietary therapy on serum high density lipoprotein cholesterol in patients with Type 2 (non-insulin-dependent) diabetes mellitus: a prospective study. Diabetologia. 1982;23(1):24-7. doi: 10.1007/BF00257725, PMID 7117725.
  19. Taskinen MR, Beltz WF, Harper I, Fields RM, Schonfeld G, Grundy SM, Howard BV. Effects of NIDDM on very-low-density lipoprotein triglyceride and apolipoprotein B metabolism. Studies before and after sulfonylurea therapy. Diabetes. 1986;35(11):1268-77. doi: 10.2337/diab.35.11.1268, PMID 3530855.
  20. Aski B, Rudrappa G, Tyagi S. Kashinath, influence of serum lipid levels on erythrocyte membrane lipid composition in diabetes mellitus. J Adv Res Biol Sci. 2010;2(1):15-23.
  21. Aski B.S, Biradar NS, Walvekar SS, Kashinath RT. The plasma phospholipids exchange on to the erythrocyte membrane lipids: with different age groups and anti diabetic therapy. Int J Pharm Biol Sci. 2014;5(3) (July–September):634-9.
  22. Vroegrijk IO, van Diepen JA, van den Berg S, Westbroek I, Keizer H, Gambelli L, Hontecillas R, Bassaganya-Riera J, Zondag GC, Romijn JA, Havekes LM, Voshol PJ. Pomegranate seed oil, a rich source of punicic acid, prevents diet-induced obesity and insulin resistance in mice. Food Chem Toxicol. 2011;49(6):1426-30. doi: 10.1016/j.fct.2011.03.037, PMID 21440024.
  23. Banihani SA, Makahleh SM, El-Akawi Z, Al-Fashtaki RA, Khabour OF, Gharibeh MY, Saadah NA, Al-Hashimi FH, Al-Khasieb NJ. Fresh pomegranate juice ameliorates insulin resistance, enhances β-cell function, and decreases fasting serum glucose in type 2 diabetic patients. Nutr Res. 2014;34(10):862-7. doi: 10.1016/j.nutres.2014.08.003, PMID 25223711.
  24. Bellone JA, Murray JR, Jorge P, Fogel TG, Kim M, Wallace DR, Hartman RE. Pomegranate supplementation improves cognitive and functional recovery following ischemic stroke: A randomized trial. Nutr Neurosci. 2019;22(10):738-43. doi: 10.1080/1028415X.2018.1436413, PMID 29433376.
  25. Banihani SA. Radish (Raphanus sativus) and diabetes. Nutrients. 2017;9(9):1014. doi: 10.3390/nu9091014, PMID 28906451.
  26. Alzoubi KH, Hasan ZA, Khabour OF, Mayyas FA, Al Yacoub ON, Banihani SA, Azab MA, Alrabadi N. The effect of high-fat diet on seizure threshold in rats: role of oxidative stress. Physiol Behav. 2018;196:1-7. doi: 10.1016/j.physbeh.2018.08.011, PMID 30149086.
  27. Romano G, Patti L, Innelli F, Di Marino L, Annuzzi G, Iavicoli M, Coronel GA, Riccardi G, Rivellese AA. Insulin and sulfonylurea therapy in NIDDM patients. Are the effects on lipoprotein metabolism different even with similar blood glucose control? Diabetes. 1997;46(10):1601-6. doi: 10.2337/diacare.46.10.1601, PMID 9313756
  28. Mellitus WHOEC on D, World Health Organization. WHO Expert Committee on Diabetes Mellitus [meeting held in Geneva from 25 September to 1 October 1979].
  29. Chang W, Hatch GM, Wang Y, Yu F, Wang M. The relationship between phospholipids and insulin resistance: From clinical to experimental studies. J Cell Mol Med. 2019;23(2):702-10. doi: 10.1111/jcmm.13984, PMID 30402908
  30. American Diabetes Association. Standards of medical care for patients with diabetes mellitus. Diabetes Care. 2003;26;Suppl 1:S33-50. doi: 10.2337/diacare.26.2007.s33, PMID 12502618.
  31. Trinder P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem. 1969;6(1):24-7. doi: 10.1177/000456326900600108.
  32. Jeppsson JO, Kobold U, Barr J, Finke A, Hoelzel W, Hoshino T, Miedema K, Mosca A, Mauri P, Paroni R, Thienpont L, Umemoto M, Weykamp C, International Federation of Clinical Chemistry and Laboratory Medicine (IFCC). Approved IFCC reference method for the measurement of HbA1c in human blood. Clin Chem Lab Med. 2002 January;40(1):78-89. doi: 10.1515/CCLM.2002.016, PMID 11916276
  33. Allain CC, Poon LS, Chan CS, Richmond WF, Fu PC. Enzymatic determination of total serum cholesterol. Clin Chem. 1974;20(4):470-5. doi: 10.1093/clinchem/20.4.470, PMID 4818200
  34. Assmann G, Schriewer H, Schmitz G, Hägele EO. Quantification of high-density-lipoprotein cholesterol by precipitation with phosphotungstic acid/MgCl2. Clin Chem. 1983;29(12):2026-30. doi: 10.1093/clinchem/29.12.2026, PMID 6640896.
  35. Hatch FT. Practical methods for plasma lipoprotein analysis. Adv Lipid Res. 1968;6:1-68. doi: 10.1016/B978-1-4831-9942-9.50008-5, PMID 4179999.
  36. Stewart JCM. Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem. 1980;104(1):10-4. doi: 10.1016/0003-2697(80)90269-9, PMID 6892980
  37. Fiske CH, Subba RYJ. Analysis of phosphorous profile by TLC. Biol Chem. 1959;234(466), 66:375.
  38. Wenguang Chang Grant M. Hatch,  Yu Wang, Fei Yu,  and Man Wang.  The relationship between phospholipids and insulin resistance: From clinical to experimental studies. J Cell Mol Med. 2019 Feb; 23(2): 702–710
  39. Goldberg IJ. Clinical review 124: Diabetic dyslipidemia: causes and consequences. J Clin Endocrinol Metab. 2001;86(3):965-71. doi: 10.1210/jcem.86.3.7304, PMID 11238470.
  40. Rivellese AA, Patti L, Romano G, Innelli F, Di Marino L, Annuzzi G, Iavicoli M, Coronel GA, Riccardi G. Effect of insulin and sulfonylurea therapy, at the same level of blood glucose control, on low density lipoprotein subfractions in type 2 diabetic patients. J Clin Endocrinol Metab. 2000;85(11):4188-92. doi: 10.1210/jcem.85.11.6956, PMID 11095452.
  41. Nehal M, Venugopal P, Baquer NZ. Changes in the lipid composition of red blood cells in hyperglycemic rats. Biochem Int. 1990;22(2):243-8. PMID 2090094.
  42. Abbott RD, Wilson P, Kannel WB, Cashelli WP. High density lipoprotein cholesterol screening and myocardial Infraction. The Framingham study. Arteriosclerosis. 1988:267-11.
  43. Jain darshna1, shaikh m.k. S2, jha r. k3, mittal shilpa4, shahi deepasha5. comparative study of serum lipid profile in obese type 2 diabetic patients with obese non-diabetic patients. journal of evaluation of medical  and dental  sciences.2014;3(65):14129-36.
  44. Jaiganesh C, Roshanadevi V, Iyyam Pillai S, Subramaniah S. Synthesis, characterization and evaluation of antidiabetic properties of a new metformin-3- hydroxyflavone complex studied in high fat diet fed - low dose streptozotocin induced experimental type 2 diabetes in Wistar rats. Int J Pharm Biol Sci. 2017;8(3) (July–September):1-15.
  45. UK Prospective Diabetes Study Group. UK Prospective Diabetes Study 27. Plasma lipids and lipoproteins at diagnosis of NIDDM by age and sex. Diabetes Care. 1997;20(11):1683-7. doi: 10.2337/diacare.20.11.1683, PMID 9353608.
  46. Mellitus WHOSG on D, World Health Organization. Diabetes mellitus: report of a WHO study group [meeting held in Geneva from 11 to 16 February 1985] [internet]. Geneva: World Health Organization; 1985. (World Health Organization technical report series?; no. 727). Geneva PP. Available from:https://apps.who.int/iris/handle/10665/39592 [cited 29/3/2022].
  47. Borkman M, Storlien LH, Pan DA, Jenkins AB, Chisholm DJ, Campbell LV. The relation between insulin sensitivity and the fatty-acid composition of skeletal-muscle phospholipids. N Engl J Med. 1993;328(4):238-44. doi: 10.1056/NEJM199301283280404, PMID 8418404.
  48. Vessby B, Tengblad S, Lithell H. Insulin sensitivity is related to the fatty acid composition of serum lipids and skeletal muscle phospholipids in 70-year-old men. Diabetologia. 1994;37(10):1044-50. doi: 10.1007/BF00400468, PMID 7851683.
  49. Clore JN, Harris PA, Li J, Azzam A, Gill R, Zuelzer W, Rizzo WB, Blackard WG. Changes in phosphatidylcholine fatty acid composition are associated with altered skeletal muscle insulin responsiveness in normal man. Metabolism. 2000;49(2):232-8.  doi: 10.1016/s0026-0495(00)91455-0, PMID 10690951

 

[Download PDF]
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy
Pharmaceutical Fields
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmaceutics
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Novel drug delivery system
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Nanotechnology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacognosy
© Copyright 2009-2015 IJPBS, India. All rights reserved. Specialized online journals by ubijournal. Website by Ubitech Solutions
         Home I Contact I Terms & Conditions