International Journal of Pharma and Bio Sciences
 
 
    ISSN 0975-6299
www.ijpbs.net


ORIGINAL RESEARCH ARTICLE
Int J Pharm Bio Sci Volume 12 Issue 3, 2021 (July-September), Pages:75-85

In-Vitro Study on Improving Antiseptic Efficiency of Cosmetics using Bacteriophage - Cosmetic Formulation

Mukund S. Ambawade, Gulab S. Gugale, Komal R. Bankhele, Radhika S. Nirgude, Bhushan P. Bhusare, Girish R. Pathade, and Pranay D. Abhang
DOI: http://dx.doi.org/10.22376/ijpbs.2021.12.3.B75-85
Abstract:

Bacteriophages are used as an alternative medicine for controlling pathogenic bacteria causing edema. The use of bacteriophages while formulating the cosmetics has novel application in improving antiseptic efficiency of cosmetics. In the present study total fourteen bacteria were isolated from edema. All isolates were screened out for isolation of their phages from the human skin as well as sewage. Out of these fourteen isolates two promising isolates (SA 1 and PA 1) showing broad spectrum phage sensitivity were genetically identified by 16S rRNA gene sequencing. The commercially available cosmetic cream was used for supplementation of phages which significantly increased phage longevity on skin surface. The translucent halo plaques (2 – 4 mm diameter) were isolated from different types of phages. The plaques produced by phages show different degrees of lysis. As dilution increases from 10-1 to 10-10, the number plaques decreased and hence PFU/mL also decreased. In titer of SA 1, highest numbers of plaques (120) were obtained for the dilution of 10-1 and the PFU/mL of the dilution was 1200×102. In titer of PA 1, highest numbers of plaques (uncountable) were obtained for the dilution of 10-1 and 10-3, hence PFU/mL cannot be determined. The supplemented cosmetic phages reduce the pathogenic bacterial growth to 95.0%, as compared with free phages and non-supplemented cosmetics to 80.1% and 70.0%, by ELISA method, respectively. The characterization studies show that the smooth surface of the bare electrode turned into a rough surface after polymer formation with adherent phages visible in the micrographs, demonstrating the interaction between phage and the specific cavities. This work indicated the enhanced antibacterial efficacy of specific fortified bacteriophage with cosmetics to be a promising formulation for efficient treatment of edema.

 

Keywords: Bacteriophage, Cosmetics, Staphylococcus aureus, Pseudomonas aeruginosa, Edema
Full HTML:
  1. Brooks GF, Butel JS, Stephen A. Medical Microbiology. 23rd ed. New York: McGraw-Hill Companies; 2004. http://www.mcgraw-hill.co.uk/html/0071476660.html
  2. Wren MW, Baldwin AW, Eldon CP, Sanderson PJ. The anaerobic culture of clinical specimens: a 14-month study. J Med Microbiol. 1977 Feb 1;10(1):49-61. doi: 10.1099/00222615-10-1-49, PMID 320338.
  3. Sulakvelidze A, editor. Bacteriophages: biology and applications. CRC Press; 2005. https://www.researchgate.net/publication/252429654_Bacteriophages_Biology_and_Applications
  4. McGuire MR, Tamez-Guerra P, Behle RW, Streett DA. Comparative field stability of selected entomopathogenic virus formulations. J Econ Entomol. 2001 Oct 1;94(5):1037-44. doi: 10.1603/0022-0493-94.5.1037, PMID 11681663.
  5. Balogh B, Jones JB, Momol MT, Olson SM, Obradovic A, King P, Jackson LE. Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Dis. 2003 Aug;87(8):949-54. doi: 10.1094/PDIS.2003.87.8.949, PMID 30812801.
  6. Jones JB, Jackson LE, Balogh B, Obradovic A, Iriarte FB, Momol MT. Bacteriophages for plant disease control. Annu Rev Phytopathol. 2007 Sep 8;45:245-62. doi: 10.1146/annurev.phyto.45.062806.094411, PMID 17386003.
  7. Barak JD, Gorski L, Naraghi-Arani P, Charkowski AO. Salmonella enterica virulence genes are required for bacterial attachment to plant tissue. Appl Environ Microbiol. 2005 Oct 1;71(10):5685-91. doi: 10.1128/AEM.71.10.5685-5691.2005, PMID 16204476.
  8. Bazargani MM, Rohloff J. Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control. 2016 Mar 1;61:156-64. doi: 10.1016/j.foodcont.2015.09.036.
  9. Lister JL, Horswill AR. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol. 2014 Dec 23;4:178. doi: 10.3389/fcimb.2014.00178, PMID 25566513.
  10. McCarthy H, Rudkin JK, Black NS, Gallagher L, O’Neill E, O’Gara JP. Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Front Cell Infect Microbiol. 2015 Jan 28;5:1. doi: 10.3389/fcimb.2015.00001, PMID 25674541.
  11. Aljghami ME, Saboor S, Amini-Nik S. Emerging innovative wound dressings. Ann Biomed Eng. 2019 Mar;47(3):659-75. doi: 10.1007/s10439-018-02186-w, PMID 30542783.
  12. Hu MS, Borrelli MR, Lorenz HP, Longaker MT, Wan DC. Mesenchymal stromal cells and cutaneous wound healing: a comprehensive review of the background, role, and therapeutic potential. Stem Cells Int. 2018 May 20;2018:6901983. doi: 10.1155/2018/6901983, PMID 29887893.
  13. Jo A, Ding T, Ahn J. Synergistic antimicrobial activity of bacteriophages and antibiotics against Staphylococcus aureus. Food Sci Biotechnol. 2016 Jun;25(3):935-40. doi: 10.1007/s10068-016-0153-0, PMID 30263357.
  14. Medellin-Peña MJ, Wang H, Johnson R, Anand S, Griffiths MW. Probiotics affect virulence-related gene expression in Escherichia coli O157: H7. Appl Environ Microbiol. 2007 Jul 1;73(13):4259-67. doi: 10.1128/AEM.00159-07, PMID 17496132.
  15. Cooper CJ, Denyer SP, Maillard JY. Rapid and quantitative automated measurement of bacteriophage activity against cystic fibrosis isolates of Pseudomonas aeruginosa. J Appl Microbiol. 2011 Mar;110(3):631-40. doi: 10.1111/j.1365-2672.2010.04928.x, PMID 21205097.
  16. Winn W, Allen S, Janda W, Koneman E, Procop G, Schreckenberger P, Woods G. Antimicrobial susceptibility testing. Konemans Color Atlas and Textbook of Diagnostic Microbiology. 2005;6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1916389/pdf/amjpathol00192-0158.pdf
  17. Holt JG, Krieg NR, Sneath PH, Staley JT. Bergey?s manual of determinative bacteriology (Williams and Wilkins, Baltimore). Krieg, NR, and Holt, JG 1984. Bergey’s manual of systematic bacteriology. Baltimore: Milliams and Wilkins. 1994:408-516. https://books.google.co.in/books?id=jtMLzaa5ONcC&printsec=frontcover#v=onepage&q&f=false
  18. Abo-elmaaty S, El Dougdoug NK, Hazaa MM. Improved antibacterial efficacy of bacteriophage-cosmetic formulation for treatment of Staphylococcus aureus in vitro. Ann Agric Sci. 2016 Dec 1;61(2):201-6. doi: 10.1016/j.aoas.2016.08.002.
  19. Heringa SD, Kim J, Jiang X, Doyle MP, Erickson MC. Use of a mixture of bacteriophages for biological control of Salmonella enterica strains in compost. Appl Environ Microbiol. 2010;76(15):5327-32. doi: 10.1128/AEM.00075-10, PMID 20525859.
  20. Bigby D, Kropinski AM. Isolation and characterization of a Pseudomonas aeruginosa bacteriophage with a very limited host range. Can J Microbiol. 1989 Jun 1;35(6):630-5. doi: 10.1139/m89-101, PMID 2504471.
  21. Abo-elmaaty S, El Dougdoug NK, Hazaa MM. Improved antibacterial efficacy of bacteriophage-cosmetic formulation for treatment of Staphylococcus aureus in vitro. Ann Agric Sci. 2016 Dec 1;61(2):201-6. doi: 10.1016/j.aoas.2016.08.002.
  22. Ertürk G, Lood R. Bacteriophages as biorecognition elements in capacitive biosensors: phage and host bacteria detection. Sens Actuators B. 2018 Apr 1;258:535-43. doi: 10.1016/j.snb.2017.11.117.
  23. Tanaka H, Negishi H, Maeda H. Control of tobacco bacterial wilt by an avirulent strain of Pseudomonas solanacearum M4S and its bacteriophage. Jpn J Phytopathol. 1990 Apr 25;56(2):243-6. doi: 10.3186/jjphytopath.56.243.
  24. Desrousseaux C, Sautou V, Descamps S, Traoré O. Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation. J Hosp Infect. 2013 Oct 1;85(2):87-93. doi: 10.1016/j.jhin.2013.06.015, PMID 24007718.
  25. Abhang P, Manasi P, Pramod M. Beneficial effects of Agnihotra on environment and agriculture. Int J Agric Sci Res (IJASR). 2015. http://www.tjprc.org/view_paper.php?id=4680
  26. Pathade G, Abhang P. Scientific study of Vedic knowledge Agnihotra. Bharatiya Bouddhik Sampada A Quarterly Science Research Journal of Vijnana Bharati, 43rd-4th(2014, Feb). https://www.researchgate.net/publication/273675026_Scientific_study_of_Vedic_Knowledge_Agnihotra
  27. Abhang P, Pathade G. Agnihotra technology in the perspectives of modern science-A review. Indian J Trad Knowl. 2017 Jul 1;16(3):454-62. http://nopr.niscair.res.in/handle/123456789/42000
  28. Abhang P. Scientific study of Somyag yadnya. Int J Sci Eng Res (IJSR). 2015 Jan;4(1). 
  29. https://www.ijsr.net/get_abstract.php?paper_id=SUB15781
  30. Abhang P. Antimicrobial and antioxidant properties of silver nano-particles synthesized from Escherichia coli. Sci Technol Dev. 2020 Jul 6;9. http://journalstd.com/gallery/6-july2020.pdf
  31. Chen M, Yu Q, Sun H. Novel strategies for the prevention and treatment of biofilm related infections. Int J Mol Sci. 2013 Sep;14(9):18488-501. doi: 10.3390/ijms140918488, PMID 24018891.
  32. Abhang P, Pathade G. Isolation of Nostocales and study the effects of scytonemin on growth profile and melanogenesis by using melanoma cell line. Int J Innov Res Sci Eng Technol. 2015;04(3):1260-7. doi: 10.15680/IJIRSET.2015.0403037.
  33. Abhang P, Pathade G. Evaluation of media components and replace them with sea water for scytonemin production by using Nostocales. Int J Pharm Bio Sci. 2015; 6(4):296-305. http://www.ijpbs.net/abstract.php?article=NDYwMg==
  34. Górski A, Borysowski J, Mi?dzybrodzki R. Phage therapy: Towards a successful clinical trial. Antibiotics. 2020 Nov;9(11):827. https://doi.org/10.3390/antibiotics9110827
  35. Principi N, Silvestri E, Esposito S. Advantages and limitations of bacteriophages for the treatment of bacterial infections. Frontiers in pharmacology. 2019 May 8;10:513. https://www.frontiersin.org/articles/10.3389/fphar.2019.00513/full
  36. Düzgüne? N, Sessevmez M, Yildirim M. Bacteriophage Therapy of Bacterial Infections: The Rediscovered Frontier. Pharmaceuticals. 2021 Jan;14(1):34. https://doi.org/10.3390/ph14010034
  37. Pinto AM, Cerqueira MA, Bañobre-Lópes M, Pastrana LM, Sillankorva S. Bacteriophages for chronic wound treatment: From traditional to novel delivery systems. Viruses. 2020 Feb;12(2):235. https://doi.org/10.3390/v12020235
  38. Gigante A, Atterbury RJ. Veterinary use of bacteriophage therapy in intensively-reared livestock. Virology journal. 2019 Dec;16(1):1-9. https://virologyj.biomedcentral.com/articles/10.1186/s12985-019-1260-3 
[Download PDF]
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy
Pharmaceutical Fields
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmaceutics
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Novel drug delivery system
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Nanotechnology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacognosy
© Copyright 2009-2015 IJPBS, India. All rights reserved. Specialized online journals by ubijournal. Website by Ubitech Solutions
         Home I Contact I Terms & Conditions