International Journal of Pharma and Bio Sciences
 
 
    ISSN 0975-6299
www.ijpbs.net


ORIGINAL RESEARCH ARTICLE
Int J Pharm Bio Sci Volume 12 Issue 2, 2021 (April-June), Pages:46-54

Nanocurcumin Modulates Ultramicroscopic Changes in the β-Cells of Pancreas in Diabetic Mice

Potphode N.D, Daunde J.A, Nimbalkar M.S, Chandrasekhar Sagar B.K and Walvekar M.V.
DOI: http://dx.doi.org/10.22376/ijpbs.2021.12.2.p46-54
Abstract:

Nanotechnology is the advanced branch of science which has been implemented in agriculture, food and medical science and its related products. Nanoparticles represent a promising drug delivery system of controlled and targeted release. Though curcumin has many beneficial effects against health problems, it has limited use due to its poor bioavailability as concluded by a number of its pharmacokinetic studies. Also it is less soluble in water due to hydrophobic nature. These problems have been overcome by nanoformulation of curcumin. The present investigation aims to study the ultramicroscopic changes in β-cells of pancreas in alloxan induced diabetic mice (Mus musculus) after the administration of nanocurcumin (NC). NC is prepared by double emulsion evaporation method. Mice were divided into four groups viz, a) Control group (GI) b) Diabetic group (GII) c) Recovery group I- Curcumin (GIII) and d) Recovery group II- Nanocurcumin (GIV). Diabetic mice were treated with curcumin as well as NC at a dose of 150 mg/kg body weight intraperitoneally. Ultramicroscopic observations of β-cells of Islets of GII shows pyknotic nuclei and decrease in number of secretory granules of insulin as compare to GI . After treatment of curcumin and NC to GIII and GIV respectively, improvement in structure of nuclei of β-cells  was observed and cytoplasm of β-cells filled with insulin granules of different sizes. Especially in GIV the secretion of insulin granules was increased significantly as compared to GII and GIII. It indicated that NC showed good bioavailability of curcumin along with increased insulin secretion by β-cells of Islets. Thus these results proved that NC modulates ultramicroscopic changes.

Keywords: Diabetes, ultramicroscopy, curcumin, NC, ?-cells, pancreas.
Full HTML:

References

1.       Roco MC. National Nanotechnology Initiative-past, present, future. Handbook on nanoscience, engineering and technology. 2nd ed; 2007.

2.       Hoang LS, Nguyen TH, Trang DT. Sinh and Mai NT. An effect of Nanocurcumin particles prepared by top-down method on CCl4-induced hepatic fibrosis mice. Int J Pharm Sci Res. 2013;4(12):4542-48.

3.       Bansal SS, Goel M, Aqil F, Vadhanam MV, Gupta RC. Advanced drug delivery systems of curcumin for cancer chemoprevention. Cancer Prev Res (Phila). 2011;4(8):1158-71. doi: 10.1158/1940-6207.CAPR-10-0006, PMID 21546540.

4.       Pandey MK, Kumar S, Thimmulappa RK, Parmar VS, Biswal S, Watterson AC. Design, synthesis and evaluation of novel pegylated curcumin analogs as potent Nrf2 activators in human bronchial epithelial cells. Eur J Pharm Sci. 2011;43(1-2):16-24. doi: 10.1016/j.ejps.2011.03.003, PMID 21426935.

5.       Huang S, Chen JC, Hsu CW, Chang WH. Effects of Nano calcium carbonate and Nano calcium citrate on toxicity in ICR mice and on bone mineral density in an ovariectomized mice model. Nanotechnology. 2009;20(37):375102. doi: 10.1088/0957-4484/20/37/375102, PMID 19706952.

6.       Brinker FJ. Herb Contraindications and drug interactions: with Appendices Addressing specific conditions and medicines. 2nd ed. Oregon: Eclectic Publishing Medical Publications, ISBN: 9781888483062; 1998.

7.       Yallapu MM, Gupta BK, Jaggi M, Chauhan SC. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci. 2010;351(1):19-29. doi: 10.1016/j.jcis.2010.05.022, PMID 20627257.

8.       Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymer. 2011;3(3):1377-97. doi: 10.3390/polym3031377, PMID 22577513.

9.       Sah E, Sah H. Recent trends of poly (lactide-co-glycolide) nanoparticles by mixing polymeric organic solution with antisolvent. J Nanomater. 2015;16:61.

10.     Li X, Jiang X. Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles. Adv Drug Deliv Rev. 2018;128:101-14. doi: 10.1016/j.addr.2017.12.015, PMID 29277543.

11.     Venkatesha SH, Berman BM, Moudgil KD. Herbal medicinal products target defined biochemical and molecular mediators of inflammatory autoimmune arthritis. Bioorg Med Chem. 2011;19(1):21-9. doi: 10.1016/j.bmc.2010.10.053, PMID 21115252.

12.     Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold. Adv Exp Med Biol. 2007;595:1-75. doi: 10.1007/978-0-387-46401-5_1, PMID 17569205.

13.     Goel A, Jhurani S, Aggarwal BB. Multi-targeted therapy by curcumin: how spicy is it? Mol Nutr Food Res. 2008;52(9):1010-30. doi: 10.1002/mnfr.200700354, PMID 18384098.

14.     Shehzad A, Ha T, Subhan F, Lee YS. New mechanisms and the anti-inflammatory role of curcumin in obesity and obesity-related metabolic diseases. Eur J Nutr. 2011;50(3):151-61. doi: 10.1007/s00394-011-0188-1, PMID 21442412.

15.     Nishiyama T, Mae T, Kishida H, Tsukagawa M, Mimaki Y, Kuroda M, Sashida Y, Takahashi K, Kawada T, Nakagawa K, Kitahara M. Curcuminoids and sesquiterpenoids in turmeric (Curcuma longa L.) suppress an increase in blood glucose level in Type 2 diabetic KK-A y mice. J Agric Food Chem. 2005;53(4):959-63. doi: 10.1021/jf0483873, PMID 15713005.

16.     Jang EM, Choi MS, Jung UJ, Kim MJ, Kim HJ, Jeon SM, Shin SK, Seong CN, Lee MK. Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat-fed hamsters. Metabolism. 2008;57(11):1576-83. doi: 10.1016/j.metabol.2008.06.014, PMID 18940397.

17.     Rahimi HR, Nedaeinia R, Sepehri Shamloo A, Nikdoust S, Kazemi Oskuee R. Novel delivery system for natural products: nano-curcumin formulations. Avicenna J Phytomed. 2016;6(4):383-98. PMID 27516979.

18.     Hoang LS, Nguyen TH, Trang D, Sinh T, Mai NT. An effect of Nanocurcumin particles prepared by top-down method on CCl4-induced hepatic fibrosis mice. Int J Pharm Sci Res. 2013;4(12):4542-48.

19.     Rachmawati H, Al Shaal LA, Müller RH, Keck CM. Development of curcumin nanocrystal: physical aspects. J Pharm Sci. 2013;102(1):204-14. doi: 10.1002/jps.23335, PMID 23047816.

20.     Mukerjee A, Vishwanatha JK. Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Res. 2009;29(10):3867-75. PMID 19846921.

21.     Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MNV. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci. 2009;37(3-4):223-30. doi: 10.1016/j.ejps.2009.02.019, PMID 19491009.

22.     Tsai YM, Jan WC, Chien CF, Lee WC, Lin LC, Tsai TH. Optimised nano-formulation on the bioavailability of hydrophobic polyphenol, curcumin, in freely moving rats. Food Chem. 2011;127(3):918-25. doi: 10.1016/j.foodchem.2011.01.059, PMID 25214079.

23.     Al-Shamaony LA, Al-Khazraji SM, Twaij HA. Hypoglycaemic effect of Artemisia herba alba. II. Effect of a valuable extract on some blood parameters in diabetic animals. J Ethnopharmacol. 1994;43(3):167-71. doi: 10.1016/0378-8741(94)90038-8, PMID 7990489.

24.     Kuroda M, Mimaki Y, Nishiyama T, Mae T, Kishida H, Tsukagawa M, Takahashi K, Kawada T, Nakagawa K, Kitahara M. Hypoglycemic effects of turmeric (Curcuma longa L. rhizomes) on genetically diabetic KK-Ay mice. Biol Pharm Bull. 2005;28(5):937-9. doi: 10.1248/bpb.28.937, PMID 15863912.

25.     Jaiswal J, Gupta SK, Kreuter J. Preparation of biodegradable cyclosporine nanoparticles by high-pressure emulsification-solvent evaporation process. J Control Release. 2004;96(1):169-78. doi: 10.1016/j.jconrel.2004.01.017, PMID 15063039.

26.     Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, Levy-Nissenbaum E, Radovic-Moreno AF, Langer R, Farokhzad OC. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials. 2007;28(5):869-76. doi: 10.1016/j.biomaterials.2006.09.047, PMID 17055572.

27.     Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev. 2008;60(15):1638-49. doi: 10.1016/j.addr.2008.08.002, PMID 18840488.

28.     Kuo J. Electron microscopy-methods and protocols. 2nd ed Humana press, New Jesey; 2007.

29.     Mccall RL, Sirianni RW. PLGA nanoparticles formed by single- or double-emulsion with vitamin E-TPGS. J Vis Exp. 2013;82(82):51015. doi: 10.3791/51015, PMID 24429733.

30.     Greenwood R, Kendall K. Selection of suitable dispersants for aqueous suspensions of zirconia and Titania powders using acoustophoresis. J Eur Ceram Soc. 1999;19(4):479-88. doi: 10.1016/S0955-2219(98)00208-8.

31.     Hanaor DAH, Michelazzi M, Leonelli C, Sorrell CC. The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. J Eur Ceram Soc. 2012;32(1):235-44. doi: 10.1016/j.jeurceramsoc.2011.08.015.

32.     Bhattacharjee S. DLS and zeta potential – what they are and what they are not? J Control Release. 2016;235:337-51. doi: 10.1016/j.jconrel.2016.06.017, PMID 27297779.

33.     Lockman PR, Koziara JM, Mumper RJ, Allen DD. Nanoparticle surface charges alter blood–brain barrier integrity and permeability. J Drug Target. 2004;12(9-10):635-41. doi: 10.1080/10611860400015936, PMID 15621689.

34.     Patel VR, Agrawal YK. Nanosuspension: an approach to enhance solubility of drugs. J Adv Pharm Technol Res. 2011;2(2):81-7. doi: 10.4103/2231-4040.82950, PMID 22171298.

35.     Bisht S, Feldmann G, Soni S, Ravi R, Karikar C, Maitra A. Polymeric nanoparticleencapsulated curcumin (nanocurcumin): A novel strategy for human cancer therapy. J Nanobiotechnol. 2007;5:1-18.

36.     Dai L, Sun C, Ruirui R, Mao L, Liu F, Gao Y, Fuguo L. Structural characterization, formation mechanism and stability of curcumin in zein-lecithin composite nanoparticles fabricated by antisolvent co-precipitation. Food Chem. 2017;237:1163-71. doi: 10.1016/j.foodchem.2017.05.134, PMID 28763965.

37.     Yallapu MM, Gupta BK, Jaggi M, Chauhan SC. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci. 2010;351(1):19-29. doi: 10.1016/j.jcis.2010.05.022, PMID 20627257.

38.     Takasu N, Komiya I, Asawa T, Nagasawa Y, Yamada T. Streptozocin- and alloxan-induced H2O2 generation and DNA fragmentation in pancreatic islets. H2O2 as mediator for DNA fragmentation. Diabetes. 1991;40(9):1141-5. doi: 10.2337/diab.40.9.1141, PMID 1834504.

39.     Kloppel G, Heitz PU. Tumors of the endocrine pancreas. In: Fletcher Cd, editor Diagnostic histopathology of tumors. Philadelphia: Churchill Livingstone, Elsevier; 2007; 2(3). p. 1123-37.

40.     Mythili MD, Vyas R, Akila G, Gunasekaran S. Effect of streptozotocin on the ultrastructure of rat pancreatic islets. Microsc Res Tech. 2004;63(5):274-81. doi: 10.1002/jemt.20039, PMID 15170757.

41.     Flament P, Remacle C. Ultrastructural aspects of streptozotocin cytotoxicity on rat pancreatic islets in vitro. Test of a protective effect of zinc. Virchows Arch B Cell Pathol Incl Mol Pathol. 1987;53(2):107-12. doi: 10.1007/BF02890232, PMID 2887057.

42.     Anello M, Lupi R, Spampinato D, Piro S, Masini M, Boggi U, Del Prato S, Rabuazzo AM, Purrello F, Marchetti P. Functional and morphological alterations of mitochondria in pancreatic beta cells from type 2 diabetic patients. Diabetologia. 2005;48(2):282-9. doi: 10.1007/s00125-004-1627-9, PMID 15654602.

43.     Degirmenci I, Kebapci N, Basaran A, Efe B, Gunes HV, Akalin A, Kurt H, Urhan M, Demirustu C. Frequency of angiotensin-converting enzyme gene polymorphism in Turkish type 2 diabetic patients. Int J Clin Pract. 2005;59(10):1137-42. doi: 10.1111/j.1368-5031.2005.00586.x, PMID 16178979.

44.     Robertson RP. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem. 2004;279(41):42351-4. doi: 10.1074/jbc.R400019200, PMID 15258147.

45.     Kim T, Davis J, Zhang AJ, He X, Mathews ST. Curcumin activates AMPK and suppresses gluconeogenic gene expression in hepatoma cells. Biochem Biophys Res Commun. 2009;388(2):377-82. doi: 10.1016/j.bbrc.2009.08.018, PMID 19665995.

[Download PDF]
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy
Pharmaceutical Fields
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmaceutics
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Novel drug delivery system
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Nanotechnology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacognosy
© Copyright 2009-2015 IJPBS, India. All rights reserved. Specialized online journals by ubijournal. Website by Ubitech Solutions
         Home I Contact I Terms & Conditions