Full HTML:
REFERENCES
1. Prasad TN, Elumalai EK. Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity. Asian Pac J Trop Biomed. 2011;1(6):439-42. doi: 10.1016/S2221-1691(11)60096-8, PMID 23569809.
2. Ruddaraju LK, Pammi SVN, Guntuku GS, Padavala VS, Kolapalli VRM. A review on anti-bacterials to combat resistance: from ancient era of plants and metals to present and future perspectives of green nano technological combinations. Asian J Pharm Sci. 2020;15(1):42-59. doi: 10.1016/j.ajps.2019.03.002, PMID 32175017.
3. Bao Z, Lan CQ. Advances in biosynthesis of noble metal nanoparticles mediated by photosynthetic organisms—a review. Colloids Surf B Biointerfaces. 2019;184(September):110519. doi: 10.1016/j.colsurfb.2019.110519.
4. Saxena A, Tripathi RM, Zafar F, Singh P. Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity. Mater Lett. 2012;67(1):91-4. doi: 10.1016/j.matlet.2011.09.038.
5. Marslin G, Siram K, Maqbool Q, Selvakesavan RK, Kruszka D, Kachlicki P, Franklin G. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials (Basel). 2018;11(6):1-25. doi: 10.3390/ma11060940, PMID 29865278.
6. Ahmad S, Munir S, Zeb N, Ullah A, Khan B, Ali J, Bilal M, Omer M, Alamzeb M, Salman SM, Ali S. Green nanotechnology: a review on green synthesis of silver nanoparticles — an ecofriendly approach. Int J Nanomed. 2019;14:5087-107. doi: 10.2147/IJN.S200254, PMID 31371949.
7. Ahmad V, Jamal QMS, Shukla AK, Alam J, Imran A, Abaza UM. Bacilli as biological nano-factories intended for synthesis of silver nanoparticles and its application in human welfare. J Clust Sci. 2017;28(4):1775-802. doi: 10.1007/s10876-017-1206-0.
8. Kurihara LK, Chow GM, Schoen PE. Nanocrystalline metallic powders and films produced by the polyol method. Nanostruct Mater. 1995;5(6):607-13. doi: 10.1016/0965-9773(95)00275-J.
9. Starowicz M, Stypu?a B, Bana? J. Electrochemical synthesis of silver nanoparticles. Electrochem Commun. 2006;8(2):227-30. doi: 10.1016/j.elecom.2005.11.018.
10. Halali M, Malekzadeh M. An investigation on the effects of experimental variables on silver nanoparticles produced by electromagnetic levitation technique. J Clust Sci. 2013;24(3):635-42. doi: 10.1007/s10876-012-0535-2.
11. Purushotham E, Krishna NG. Preparation and characterization of silver nanoparticles. Indian J Phys. 2014;88(2):157-63. doi: 10.1007/s12648-013-0396-z.
12. Sun L, Zhang Z, Dang H. A novel method for preparation of silver nanoparticles. Mater Lett. 2003;57(24-25):3874-9. doi: 10.1016/S0167-577X(03)00232-5.
13. Banne SV, Patil MS, Kulkarni RM, Patil SJ. Synthesis and characterization of silver nanoparticles for EDM applications. Mater Today Proc. 2017;4(11):12054-60. doi: 10.1016/j.matpr.2017.09.130.
14. El-Naggar Nel-A, Abdelwahed NAM, Darwesh OMM. Fabrication of biogenic antimicrobial silver nanoparticles by Streptomyces aegyptia NEAE 102 as eco-friendly nanofactory. J Microbiol Biotechnol. 2014;24(4):453-64. doi: 10.4014/jmb.1310.10095, PMID 24375417.
15. Javaid A, Oloketuyi SF, Khan MM, Khan F. Diversity of bacterial synthesis of silver nanoparticles. BioNanoScience. 2018;8(1):43-59. doi: 10.1007/s12668-017-0496-x.
16. . KS, Balaji S, Basavaraja S, Kamala J, Venkataraman A. Biosynthesis and characterization of silver nanoparticles using Ficus benghalensis leaf extract. Int J Res Eng Technol. 2014;03(5):867-74. doi: 10.15623/ijret.2014.0305158.
17. Roy S, Mukherjee T, Chakraborty S, Das TK, Biosynthesis. characterisation & antifungal activity of silver nanoparticles synthesized by the fungus Aspergillus foetidus MTCC8876. Dig J Nanomater Biostructures. 2012;8(1):197-205.
18. Sudha SS, Rajamanickam K, Rengaramanujam J. Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria. Indian J Exp Biol. 2013;51(5):393-9. PMID 23821828.
19. Beach ES, Cui Z, Anastas PT. Green Chemistry: A design framework for sustainability. Energy Environ Sci. 2009;2(10):1038-49. doi: 10.1039/b904997p.
20. Ruddaraju LK, Pammi SVN, Guntuku Gs, Padavala VS, Kolapalli VRM. A review on anti-bacterials to combat resistance: from ancient era of plants and metals to present and future perspectives of green nano technological combinations. Asian J Pharm Sci. 2019;(xxxx);15(1):42-59. doi: 10.1016/j.ajps.2019.03.002.
21. Dongfack MDJ, Lallemand MC, Kuete V, Mbazoa CD, Wansi JD, Trinh-van-Dufat H, Michel S, Wandji J. A new sphingolipid and furanocoumarins with antimicrobial activity from Ficus exasperata. Chem Pharm Bull. 2012;60(8):1072-5. doi: 10.1248/cpb.c12-00279, PMID 22863713.
22. Khaliq HA. A review of pharmacognostic, physicochemical, phytochemical and pharmacological studies on Ficus benghalensis L. J Sci Innov Res. 2017;6(4):151-63. doi: 10.3389/fphar.2016.00059.
23. Ahmed F, Urooj A. Pharmacognostical studies on Ficus racemosa stem bark. Pharmacogn J. 2011;3(19):19-24. doi: 10.5530/pj.2011.19.4.
24. Ahmad S, Bhatti FR, Khaliq FH, Irshad S, Madni A. Medicine A. A review on the prosperous phytochemical and pharmacological effects of Ficus carica. Int J Bioassays. 2013;2(5):843-9.
25. Imran M, Rasool N, Rizwan K, Zubair M, Riaz M, Zia-Ul-Haq M, Rana UA, Nafady A, Jaafar HZ. Chemical composition and biological studies of Ficus benjamina. Chem Cent J. 2014;8(1):12. doi: 10.1186/1752-153X-8-12, PMID 24524349.
26. Imran M, Rasool N, Rizwan K, Zubair M, Riaz M, Zia-Ul-Haq M, Rana UA, Nafady A, Jaafar HZ. Chemical composition and biological studies of Ficus benjamina. Chem Cent J. 2014;8(1):12. doi: 10.1186/1752-153X-8-12, PMID 24524349.
27. Oladipo OT, Akinpelu BA, Folorunso AE, Godwin A, Omotoso SE, Dosunmu OA, Joseph WA. Chemotaxonomic study of six Nigerian Ficus species (Moraceae). Not Sci Biol. 2017;9(2):250-5. doi: 10.15835/nsb9210024.
28. Bello MO, Agbendeh ZM, Jacob AG. Comparative studies of phytochemical screening of Ficus sycomorus linn stem bark extract and Piliostigma thonningii roots extract. Pelagia Res Libr Asian J Plant Sci Res. 2013;3:69-73. doi: 10.1109/23.983160.
29. Olaokun OO, McGaw LJ, Eloff JN, Naidoo V. Evaluation of the inhibition of carbohydrate hydrolysing enzymes, antioxidant activity and polyphenolic content of extracts of ten African Ficus species (Moraceae) used traditionally to treat diabetes. BMC Complement Altern Med. 2013;13(94):94. doi: 10.1186/1472-6882-13-94, PMID 23641947.
30. Nworu CS, Nwuke HC, Akah PA, Okoye FBC, Esimone CO. Extracts of Ficus exasperata leaf inhibit topical and systemic inflammation in rodents and suppress LPS-induced expression of mediators of inflammation in macrophages. J Immunotoxicol. 2013;10(3):302-10. doi: 10.3109/1547691X.2012.732121, PMID 23098056.
31. Joseph B, Justin Raj S. Pharmacognostic and phytochemical properties of Ficus carica linn - an overview. Int J PharmTech Res. 2011;3(1):8-12.
32. Ahmed F, Karim A, Mueen Ahmed K, Abedin M. Traditional uses and pharmacological potential of Ficus exasperata vahl. Syst Rev Pharm. 2012;3(1):15-23. doi: 10.4103/0975-8453.107131.
33. Beck H. Tropical ecology. Encycl Ecol. 2018;2(November 2017):671-8. doi: 10.1016/B978-0-12-409548-9.11002-4.
34. Odunbaku OA, Illusanya OA, Akasiro KS. Antibacterial activity of ethanolic leaf extract of Ficus exasperata on Escherichia coli and Staphylococcus albus. Sci Res Essays. 2008;3(11):562-4.
35. Salem MZM, Salem AZM, Camacho LM, Ali HM. Antimicrobial activities and phytochemical composition of extracts of Ficus species: an overview. Afr J Microbiol Res. 2013;7(33):4207-19. doi: 10.5897/AJMR2013.5570.
36. Yessoufou K, Elansary HO, Mahmoud EA, Skalicka-Wo?niak K. Antifungal, antibacterial and anticancer activities of Ficus drupacea L. stem bark extract and biologically active isolated compounds. Ind Crops Prod. 2015;74:752-8. doi: 10.1016/j.indcrop.2015.06.011.
37. Bhawana, Robin, Kaur J, Vig AP, Arora S, Kaur R. Evaluation of antibacterial potential of Ficus species. J Pharm Sci Res. 2018;10(5):1251-5.
38. Ghanbari A, Le Gresley A, Naughton D, Kuhnert N, Sirbu D, Ashrafi GH. Biological activities of Ficus carica latex for potential therapeutics in human papillomavirus (HPV) related cervical cancers [Sci Rep:1013]. Sci Rep. 2019;9(1):1013. doi: 10.1038/s41598-018-37665-6, PMID 30705373.
39. Siddiqi KS, Husen A, Rao RAK. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnology. 2018;16(1):14. doi: 10.1186/s12951-018-0334-5, PMID 29452593.
40. Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv. 2013;31(2):346-56. doi: 10.1016/j.biotechadv.2013.01.003, PMID 23318667.
41. Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, KalininaNO. Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat. 2014;6(1):35-44. doi: 10.32607/20758251-2014-6-1-35-44, PMID 24772325.
42. Si S, Mandal TK. Tryptophan-based peptides to synthesize gold and silver nanoparticles: A mechanistic and kinetic study. Chemistry. 2007;13(11):3160-8. doi: 10.1002/chem.200601492, PMID 17245786.
43. Mondal A, Mondal S, Samanta S, Mallick S. Synthesis of Ecofriendly Silver Nanoparticle from plant latex used as an important taxonomic tool for phylogenetic inter-relationship. Adv Biol Res. 2011;2(June):122-33.
44. Saxena A, Tripathi RM, Zafar F, Singh P. Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity. Mater Lett. 2012;67(1):91-4. doi: 10.1016/j.matlet.2011.09.038.
45. Singh PP, Bhakat C. Green synthesis of gold nanoparticles and silver nanoparticles from leaves and bark of Ficus carica for nanotechnological application. Int J Sci Res Publ. 2012;2(5):1-4.
46. Logaranjan K, Pandian SDaK. Biogenic synthesis of silver nanoparticles using fruit extract of Ficus carica and study its antimicrobial activity. Nano Biomed Eng. 2012;4(4):177-82. doi: 10.5101/nbe.v4i4.p177-182.
47. Bhakat C. Effects of silver nanoparticles synthesized from Ficus benjamina on normal cells and cancer cells. IOSJPBS. 2012;1(4):33-6. doi: 10.9790/3008-0143336.
48. Velayutham K, Rahuman AA, Rajakumar G, Roopan SM, Elango G, Kamaraj C, Marimuthu S, Santhoshkumar T, Iyappan M, Siva C. Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus. Asian Pac J Trop Med. 2013;6(2):95-101. doi: 10.1016/S1995-7645(13)60002-4, PMID 23339909.
49. Antony JJ, Sithika MAA, Joseph TA, Suriyakalaa U, Sankarganesh A, Siva D, Kalaiselvi S, Achiraman S. In vivo antitumor activity of biosynthesized silver nanoparticles using Ficus religiosa as a nanofactory in DAL induced mice model. Colloids Surf B Biointerfaces. 2013;108:185-90. doi: 10.1016/j.colsurfb.2013.02.041, PMID 23537836.
50. Borase HP, Patil CD, Suryawanshi RK, Patil SV. Ficus carica latex-mediated synthesis of silver nanoparticles and its application as a chemo photoprotective agent. Appl Biochem Biotechnol. 2013;171(3):676-88. doi: 10.1007/s12010-013-0385-x, PMID 23881781.
51. Saware K, Venkataraman A. Biosynthesis and characterization of stable silver nanoparticles using Ficus religiosa leaf extract: A mechanism perspective. J Clust Sci. 2014;25(4):1157-71. doi: 10.1007/s10876-014-0697-1.
52. Ulug B, Haluk Türkdemir M, Cicek A, Mete A. Role of irradiation in the green synthesis of silver nanoparticles mediated by fig (Ficus carica) leaf extract. Spectrochim Acta A Mol Biomol Spectrosc. 2015;135:153-61. doi: 10.1016/j.saa.2014.06.142, PMID 25062061.
53. Salem WM, Haridy M, Sayed WF, Hassan NH. Antibacterial activity of silver nanoparticles synthesized from latex and leaf extract of Ficus sycomorus. Ind Crops Prod. 2014;62:228-34. doi: 10.1016/j.indcrop.2014.08.030.
54. Sankar R, Maheswari R, Karthik S, Shivashangari KS, Ravikumar V. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles. Mater Sci Eng C. 2014;44(February 2008):234-9. doi: 10.1016/j.msec.2014.08.030, PMID 25280701.
55. Johnson I, Prabu HJ. Green synthesis and characterization of silver nanoparticles by leaf extracts of Cycas circinalis, Ficus amplissima, Commelina benghalensis and Lippia nodiflora. Int Nano Lett. 2015;5(1):43-51. doi: 10.1007/s40089-014-0136-1.
56. Lee KX, Shameli K, Yew YP, Teow SY, Jahangirian H, Rafiee-Moghaddam R, Webster TJ. Recent developments in the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical applications. Int J Nanomed. 2020;15:275-300. doi: 10.2147/IJN.S233789, PMID 32021180.
57. Praba PS, Vasantha VS, Jeyasundari J, Brightson Y, Jacob A. Synthesis of plant-mediated silver nanoparticles using Ficus microcarpa leaf extract and evaluation of their antibacterial activities. Eur Chem Bull. 2015;4(3):116-20.
58. Salar RK, Sharma P, Kumar N. Enhanced antibacterial activity of streptomycin against some human pathogens using green synthesized silver nanoparticles. Resour Technol. 2015;1(2):106-15. doi: 10.1016/j.reffit.2015.11.004.
59. Kumar B, Smita K, Cumbal L, Debut A. Ficus carica (Fig) fruit mediated green synthesis of silver nanoparticles and its antioxidant activity: a comparison of thermal and ultrasonication approach. BioNanoScience. 2016;6(1):15-21. doi: 10.1007/s12668-016-0193-1.
60. Nakkala JR, Mata R, Sadras SR. Green synthesized nano silver: Synthesis, physicochemical profiling, antibacterial, anticancer activities and biological in vivo toxicity. J Colloid Interface Sci. 2017;499:33-45. doi: 10.1016/j.jcis.2017.03.090, PMID 28363102.
61. Jacob SJP, Prasad VLS, Sivasankar S, Muralidharan P. Biosynthesis of silver nanoparticles using dried fruit extract of Ficus carica - Screening for its anticancer activity and toxicity in animal models. Food Chem Toxicol. 2017;109(2):951-6. doi: 10.1016/j.fct.2017.03.066, PMID 28377268.
62. Sharma AK, Kumar A, Kumar S, Mukherjee S, Nagpal D, Nagaich U, Rajput SK. Preparation and therapeutic evolution of: Ficus benjamina solid lipid nanoparticles against alcohol abuse/Antabuse induced hepatotoxicity and cardio-renal injury. RSC Adv. 2017;7(57):35938-49. doi: 10.1039/C7RA04866A.
63. Ramesh AV, Lavakusa B, Mohan BS, Kumar YP, Devi DR, Basavaiah K. A facile plant mediated Synthesis of magnetite nanoparticles using aqueous leaf extract of Ficus hispida L. for adsorption of organic dye. IOSR JAC. 2017;10(7):35-43. doi: 10.9790/5736-1007013543.
64. Pranitha V, Krishna G, Alpha M. Silver nanoparticles biosynthesized using Ficus hispida aqueous extract and their antibacterial studies. Int J PharmSci Invent. 2017;6(7):44-7.
65. Singhal A, Singhal N, Bhattacharya A, Gupta A. Synthesis of silver nanoparticles (AgNPs) using Ficus retusa leaf extract for potential application as antibacterial and dye decolourising agents. Inorg Nano Met Chem. 2017;47(11):1520-9. doi: 10.1080/24701556.2017.1357604.
66. Al-Qahtani KM. Cadmium removal from aqueous solution by green synthesis zero valent silver nanoparticles with Ficus benjamina leaves extract. Egypt J Aquat Res. 2017;43(4):269-74. doi: 10.1016/j.ejar.2017.10.003.
67. Kanjikar AP, Hugar AL, Londonkar RL. Characterization of phyto-nanoparticles from Ficus krishnae for their antibacterial and anticancer activities. Drug Dev Ind Pharm. 2018;44(3):377-84. doi: 10.1080/03639045.2017.1386205, PMID 29098876.
68. Ramesh AV, Devi DR, Battu GR, Basavaiah K. A Facile plant mediated synthesis of silver nanoparticles using an aqueous leaf extract of Ficus hispida Linn. f. for catalytic, antioxidant and antibacterial applications. S Afr J Chem Eng. 2018;26:25-34. doi: 10.1016/j.sajce.2018.07.001.
69. Birusanti AB, Mallavarapu U, Nayakanti D, Espenti CS. Plant-mediated zno nanoparticles using Ficus racemosa leaf extract and their characterization, antibacterial activity. Asian J Pharm Clin Res. 2018;11(9):463-7. doi: 10.22159/ajpcr.2018.v11i9.28084.
70. Ashraf MY. Preparation of eco-friendly antibacterial silver nanoparticles from leaf extract of Ficus benjamina. Biomed J Sci Tech Res. 2018;9(4):7260-4. doi: 10.26717/bjstr.2018.09.001829.
71. Th. Marzuk AFT, Adnan H, Hussein NN, Oda AM, Kamil SA, Salah M. Green synthesis of silver nanoparticle by Ficus cordata leaf extract and study its antibacterial activity. Orient J Chem. 2019;35(3):1195-200. doi: 10.13005/ojc/350340.
72. Usman M, Ahmed A, Yu B, Peng Q, Shen Y, Cong H. Photocatalytic potential of bio-engineered copper nanoparticles synthesized from Ficus carica extract for the degradation of toxic organic dye from wastewater: Growth mechanism and study of parameter affecting the degradation performance. Mater Res Bull. 2019;120. doi: 10.1016/j.materresbull.2019.110583, PMID 110583.
73. Timi D, Gopalakrishnan S, Maino M. Antimicrobial application and assessment of green synthesized silver nanoparticles using aqueous leaf extract of Ficus copiosa. J Biomed Eng Imaging. 2019;6(3):06-15. doi: 10.14738/jbemi.63.7641.
74. Abdel-Aziz HM, Farag RS, Abdel-Gawad SA. Carbamazepine removal from aqueous solution by green synthesis zero-valent iron/Cu nanoparticles with Ficus benjamina leaves extract. Int J Environ Resour. 2019;13(5):843-52. doi: 10.1007/s41742-019-00220-w.
|