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  PHARMACOPHORE MODEL GENERATION & LIGAND BASED 3D-QSAR STUDY AND DESIGN OF NOVEL BIPHENYL DERIVATIVES OF BENZIMIDAZOLE AS ANTI-MYCOBACTERIAL AGENTS  SAZID ALI*1, MOHD SHAHARYAR2, SHAILENDRA SHARMA1  1Jodhpur institute of Pharmacy, Jodhpur National University,  Jodhpur, Rajasthan 342003, India 2 School of Pharmaceutical Education and Research, Jamia Hamdard,  New Delhi 110062, India  ABSTRACT  With the aim of designing new chemical entities with enhanced inhibitory potencies against Mycobacterium tuberculosis, the 3D-QSAR studies were carried out on biphenyl analogues of the tuberculosis drug, (6S)-2-nitro-6-{[4-trifluoromethoxy)benzyl]oxy}-6, 7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824),  as presented here. The 3D-QSAR studies involve analysis of the quantitative relationship between the biological activity of a set of compounds and their three-dimensional structural properties, using statistical correlation methods. Anti-mycobacterial activity (MABA) was considered for the 3D-QSAR studies using the pharmacophore modelling. The hypothesis model results were found statistically significant (q2 >0.7 and r2>0.8). Based on the findings of the 3D-QSAR model and structural insights, a series of new biphenyl derivatives of benzimidazole were designed and the anti-mycobacterial activities of the designed compounds were predicted. The analysis of pharmacophore generated has provided many clues about the structural requirement for the observed biological activity which shows that the electron-withdrawing groups at the terminal aryl rings are favorable for MABA inhibitory activity i.e., the addition of electron-withdrawing groups at this site will lead to increased MABA inhibition To add further, the OH, NH2 and CONH2Ph groups should be avoided at para position and lipophilicity is significant factor for further improvement.   KEYWORDS: 3D-QSAR, Mycobacterium tuberculosis, tuberculosis, drug design, benzimidazole, PA-824, pharmacophore.     
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INTRODUCTION  Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is still one of the world’s deadly disease with crucial impact on medical and economic conditions of patients. In present TB treatment, a combination of two or more drugs like isoniazid, rifampicin, pyrazinamide, and Ethambutol is used to cure the patient. Today the difficulties faced in managing TB are due to, the long duration treatment regimens, the emergence of drug resistant Mtb strains and coinfection with HIV/AIDS. To overcome these, efforts are on for (a) development of long-acting drugs with extended-

intervals of dosing in order to facilitate “Directly Observed Treatment Short course (DOTS)” and enhanced patient compliance, (b) prevention of MDR-TB strains by using drugs, which exhibit potent early microbicidal microbiocidal activity and (c) eradication of slowly metabolizing and, if possible, dormant Mtb population that cause relapse, using new classes of anti-TB drugs 1. However, with rise of multi-drug resistant strains of Mtb there is urgent need to design new potent efficient inhibitors2 or modifying the existing drugs to inhibit Mtb as well as pre-existing resistant variants due to occurrence of mutations during ongoing bacterial replication3.  

  Figure 1 Structures of nitroimidazole based antitubercular agents  Three-dimensional Quantitative Structure-Activity Relationship (3D-QSAR) approach is one of the most powerful techniques which come in the class of ligand-based drug design where 3D structure of the target protein is unavailable. Thus, lead optimization with or without receptor 3D structure are the most important applications of 3D-QSAR4. The 3D-QSAR studies involve analysis of the quantitative relationship between the biological activity of a set of compounds and their three-dimensional structural properties, using statistical correlation methods. It allows 3D visual analysis for spatial arrangement of structural features with biological activity thus is advantageous over 2D-QSAR where model data has to be taken into consideration. In another 3D-QSAR CoMFA study on biphenyl analogues of the tuberculosis drug, (6S)-2- nitro-6-{[4-trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5Himidazo[2,1-b][1,3]oxazine (PA-824) was carried out to design new chemical entities with enhanced inhibitory potencies 

against Mycobacterium tuberculosis5. Further a statistically significant model was established using CoMSIA and modelled Inhibitory activities of monocyclic nitroimidazoles against Mycobacterium using docking, pharmacophore alignment and comparative molecular similarity indices analysis (CoMSIA) methods6. A 3D- quantitative structure–activity relationship (QSAR) study on biphenyl analogues of the tuberculosis (TB) drug, PA-824  was performed using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) approaches revealing that both the CoMFA and CoMSIA models  possess  high accommodating capacities and they would be reliable for predicting the pMIC values of new PA-824 derivatives Based on the models and structural insights, a series of new PA-824 derivatives was  were designed and the anti-mycobacterial activities of the designed compounds were predicted based on the best 3D-QSAR model7.  Table 1 Score of different parameters of the hypothesis AARR.325  S.No. Parameters Scores 1 Survival 288.49 2 Survival -inactive 285.773 3 Post-hoc 3.697 4 Site 0.99 5 Vector 0.908 6 Volume 0.797 7 Selectivity 0 8 Matches 57 9 Energy 0.986 10 Activity 8.824 11 Inactive 2.717  



 Int J Pharm Bio Sci 2017 July; 8(3) (P)160-169  

 This article can be downloaded from www.ijpbs.net P-162 

Related to the foregoing studies we are reporting 3D QSAR models for replicating (anti-mycobacterial activity [MABA]) conditions which are having very good predictive capability of new PA-824. Further we designed a new series of biphenyl derivatives of benzimidazole and predicted their antitubercular MABA activities by using the best 3D QSAR model. This work 

revealed the relationships between the biological activity and the molecular properties of the PA824 derivatives, and provided useful information for guiding the design of novel anti-mycobacterial agents. Some nitroimidazole based antimycobacterial drugs are in clinical evaluation (Figure 1). 
 

  Figure 2 Design strategy for novel PA-824 derivatives  MATERIALS AND METHODS  Datasets A large dataset of PA-824 analogues and experimental minimum inhibitory concentration (MIC) values were collected from the literatures (Denny et al., 2010). The quality of the biological data under investigation as well as the structural diversity of the dataset is the important foundations for success of QSAR studies. In this work, a series of 79 analogues of PA-824 was collected from published article. The in vitro MIC values employed in this work were measured under the same experimental conditions, a fundamental requirement for QSAR studies. The MIC values were converted into the corresponding pMIC values (Table 3) and used as dependent variables in the 3D-QSAR investigations. The MIC values of the molecules were expressed as micromolar (µM) units and converted to corresponding pMIC values according to the formula:  pMIC = - log MIC. The generation of consistent statistical models depends on the proper selection of both training and test sets in terms of structural diversity and property values distribution. The dataset consists of both active and inactive molecules, and the dataset was divided into 

training and test set using the ‘‘Automated Random Selection’’ option present in the PHASE software. 48 and 31 compounds were selected as training set and test set respectively (Table 3). The partitioning was so selected that there should be both active and inactive ligands in each test as well as training set. The dataset was then used for generating common pharmacophore hypotheses and subsequently for developing 3D-QSAR models (Figure 2, Table 3).  Computational details PHASE-3.1 module of Maestro-9 (Phase3.1, Schrödinger, LLC, 2009) molecular modelling software was used to generate 3D pharmacophore models for the present series of compounds. The structures were sketched using maestro builder toolbar and were assigned as active and inactive by giving an appropriate activity threshold value (Tables 3). Sketched structures (Table 3) were prepared with the help of ligprep module and proper protonation states were assigned with the ionizer subprogram at pH = 7.2 ± 0.2 (LigPrep, Schrödinger, LLC, 2009). The conformations were generated with the help of MacroModel torsional sampling using OPLS_2005 force field (MacroModel, Schrödinger, LLC, 2009).  
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  Figure 3 Atom-based 3D-QSAR model visualization for AARR.325 hypothesis in context of the most active inhibitor (compound 39) and various substituents effects: [A] electron-withdrawing feature, [B] hydrogen bond donor, [C] hydrophobic effects, and [D] negative ionic effect  Prepared ligands were then used for generating common pharmacophore hypothesis (CHPs) and QSAR models. As most ligands are flexible, it is, therefore, essential to consider a range of conformations to increase the chances of finding the most active conformer close to the bound structure; so it is necessary to generate all possible conformations. Accordingly, the prepared ligands were subjected to conformational analysis using confogen method implemented in the Schrödinger software. PHASE 

utilizes fine-grained conformational sampling and some scoring methods to identify CHPs for a series of molecules which have particular target specificity. Each hypothesis conveys a particular 3D conformation of a set of ligands in which the ligands are going to bind to the receptor. The best hypothesis was then correlated with known biological activity values to generate a 3D-QSAR model which identifies the whole structural features of molecules that govern activity8-9.  
 Table 2 3D-QSAR statistical parameters  PLS Factor SD r2 F P RMSE q2 Pearson-R 1 0.3727 0.4377 35.8 3.062e-007 0.5624 0.8528 0.7301 2 0.3089 0.6221 37 3.1e-010 0.5393 0.8616 0.7645 3 0.2385 0.7797 51.9 1.684e-014 0.5112 0.8676 0.8778 4 0.1844 0.8713 72.8 1.422e-018 0.4875 0.8717 0.9127 5 0.145 0.9223 99.6 3.56e-022 0.4795 0.8759 0.9376  Active analogue approach was used to identify a CPH which has been applied in generating significant 3D-QSAR models10-12. The common pharmacophores were culled from the conformations of the set of active ligands using a tree-based partitioning technique which groups together similar pharmacophores according to their inter-site distances. A tree depth of five with initial box size of 25.6 A° and final box size of 0.8 A° was used (Phase3.1, Schrödinger 2009; Samantha et al., 2008). Following which pharmacophores were scored and ranked. Scoring algorithm includes contributions from the alignment of site points and vectors, volume overlap, 

selectivity, number of ligands matched, relative conformational energy, and activity (Dixon et al., 2006). The selected AARR.325 hypothesis with various scores is reviewed in Table 1.The best pharmacophore hypothesis AARR.325 selected was used for further QSAR development. The mentioned 3D pharmacophore hypothesis in Figure 3 includes the following features: two hydrogen bond acceptor (A) in pink colour and two aromatic rings (R) in yellow colour. The 2D representation of the AARR.325 hypothesis is given in Figure 2. 
    



 Int J Pharm Bio Sci 2017 July; 8(3) (P)160-169  

 This article can be downloaded from www.ijpbs.net P-164 

Table 3 Fitness and PHASE predicted activity data for AARR.325 hypothesis  Ligand Name QSAR Set R IC50 pIC50 Predicted Activity pIC50 Pharm Set Fitness 1. training H 0.045 1.346787 1.263 active 2.96 2. training 2-CF3 0.077 1.113509 1.212 active 2.69 3. test 2-CHO 0.08 1.09691 1.091 active 2.74 4. training 2-F 0.19 0.721246 1.156 inactive 2.87 5. test 2-Cl 0.15 0.823909 0.989 active 2.81 6. training 2-OH 0.12 0.920819 1.028 active 2.85 7. training 2-OMe 0.065 1.187087 1.364 active 2.82 8. test 2-OEt 0.03 1.522879 1.497 active 2.79 9. training 2-O(CH2)3OH 0.34 0.468521 0.723 inactive 2.75 10. test 2-OCF3 0.035 1.455932 1.324 active 2.74 11. training 2-OPh 0.06 1.221849 1.212 active 2.72 12. training 2-SMe 0.087 1.060481 1.124 active 2.74 13. training 3-iPr 0.14 0.853872 0.987 active 2.27 14. test 3-Ph 0.31 0.508638 0.682 inactive 2.79 15. training 3-CF3 0.067 1.173925 1.126 active 2.26 16. training 3-CHO 0.14 0.853872 0.926 active 2.89 17. training 3-CN 0.12 0.920819 0.915 active 2.62 18. training 3-CONH2 2.8 -0.44716 -0.368 inactive 2.28 19. training 3-F 0.045 1.346787 1.142 active 2.89 20. training 3-Cl 0.06 1.221849 1.386 active 2.6 21. test 3-OH 0.14 0.853872 0.626 active 2.89 22. training 3-OMe 0.27 0.568636 0.538 inactive 2.9 23. training 3-O(CH2)2OH 0.46 0.337242 0.286 inactive 2.84 24. training 3- O(CH2)3OH 0.18 0.744727 0.973 inactive 2.51 25. training 3- O(CH2)2NMe2 1.5 -0.17609 -0.154 inactive 2.49 26. test 3-OCF3 0.077 1.113509 1.047 active 2.8 27. test 3-OCH2Ph 0.12 0.920819 1.023 active 2.47 28. training 3-SMe 0.077 1.113509 1.056 active 2.87 29. training 3-NH2 0.12 0.920819 0.893 active 2.61 30. training 3-NO2 0.13 0.886057 0.859 active 2.87 31. test 4-iPr 0.1 1.000000 0.943 active 2.61 32. training 4-tBu 0.095 1.022276 1.129 active 2.58 33. test 4-Ph 0.09 1.045757 1.034 active 2.86 34. training 4-CF3 0.03 1.522879 1.483 active 2.89 35. training 4-CH2OH 0.54 0.267606 0.097 inactive 2.94 36. test 4-CH2OtBu 0.077 1.113509 0.952 active 2.82 37. training 4-CH2NHPh 0.06 1.221849 1.152 active 2.51 38. test 4-CHO 0.2 0.69897 0.738 inactive 2.93 39. training 4-CN 0.025 1.60206 1.564 active 2.22 40. test 4-CONH2 2.1 -0.32222 -0.283 inactive 2.33 41. training 4-COMe 0.04 1.39794 1.458 active 2.62 42. training 4-F 0.015 1.823909 1.758 active 2.95 43. test 4-Cl 0.015 1.823909 1.562 active 3 44. training 4-OH 0.64 0.19382 0.149 inactive 2.67 45. test 4-OMe 0.065 1.187087 1.230 active 2.94 46. test 4-OiPr 0.25 0.60206 0.502 inactive 2.88 47. training 4-OPh 0.04 1.39794 1.351 active 2.55 48. test 4-O(CH2)2OH 0.55 0.259637 0.248 inactive 2.89 49. test 4- O(CH2)3OH 0.6 0.221849 0.317 inactive 2.86 50. training 4-O(CH2)3 Nmorpholine 0.097 1.013228 1.142 active 2.46 51. training 4-OCF2H 0.05 1.30103 1.426 active 2.89 52. training 4-OCF3 0.035 1.455932 1.437 active 2.84 53. training 4-SMe 0.075 1.124939 1.119 active 2.61 54. test 4-SO2Me 0.067 1.173925 1.211 active 2.56 55. training 4-NH2 0.49 0.309804 0.362 inactive 2.93 56. training 2-CL,4-CF3 0.03 1.522879 0.963 active 2.78 57. test 2-Cl,4-OCF3 0.04 1.39794 1.120 active 2.76 58. test 2-Cl,6-OMe 0.055 1.259637 1.173 active 2.58 59. test 2-F,4-OCF3 0.045 1.346787 1.428 active 2.53 60. test 2-F,6-OMe 0.13 0.886057 0.729 active 2.79 61. test 2,6-diMe 0.39 0.408935 0.218 inactive 2.68 62. training 2,6-diOMe 0.31 0.508638 0.562 inactive 2.51 63. test 3,4-diF 0.03 1.522879 1.439 active 2.64 64. test 3-Cl,4-CF3 0.06 1.221849 1.382 active 2.57 65. training 3-Cl,4-OCF3 0.03 1.522879 1.729 active 2.27 66. training 3-OCF3,4-Cl 0.04 1.39794 1.257 active 2.83 67. test 3-CF3,4-Cl 0.035 1.455932 1.226 active 2.52 68. training 3-NO2,4-OCF3 0.045 1.346787 1.384 active 2.79 69. test 3-F,4-OMe 0.04 1.39794 1.318 active 2.62 70. training 3-F,4-OCF3 0.03 1.522879 1.639 active 2.84 71. training 3-OMe,4-F 0.045 1.346787 1.259 active 2.91 72. test 3-OCF2H,4-Cl 0.03 1.522879 1.384 active 2.56 
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73. training 3-OH,4-Cl 0.2 0.69897 0.538 inactive 2.92 74. test 3,5-diOMe 0.28 0.552842 0.382 inactive 2.52 75. training 2-OMe,3,5-diF 0.04 1.39794 1.183 active 2.77 76. training 2,6-diMe,4-OMe 0.58 0.236572 0.273 inactive 2.69 77. training 3,4,5-triF 0.04 1.39794 1.429 active 2.6 78. training 3,5-diMe,4-OH 0.3 0.522879 0.547 inactive 2.59 79. test 3,5-diF,4-OMe 0.045 1.346787 1.293 active 2.88  Building of QSAR model AARR.325 hypothesis was used to generate a robust 3D-QSAR model. Random selection was done for obtaining training and test partition for model generation. PHASE has two 3D structure alignment tools: the atom-based alignment and the pharmacophore- based alignment. Atom-based alignment technique is good for the structures which contains a relatively small number of rotatable bonds and some common structural framework. This alignment technique has been used for generating number of 3D-QSAR models for diversity of structures (Viney et al, 2008; Dixon et al, 2006). QSAR model was built by atom-based selection criterion. Statistical significance of various models is given in Table 2. The pharmacophore-based QSAR does not consider possible steric clashes with the receptor while atom-based QSAR considers all possible steric clashes with the receptor and uses the entire molecular structure for generating QSAR models. Therefore, an atom-based QSAR model is more useful in explaining the structure-activity relationship13. In atom-based QSAR, a molecule is treated as a set of overlapping van der Waal spheres in which each atoms (and hence each sphere) are classified in six categories according to a simple set of rules:  i) Hydrogen bond donors (D): Hydrogens attached to polar atoms. ii) Hydrophobic/non-polar (H) : Carbons, halogens and C–H hydrogens. iii) Negative ionic (N) : Atoms with an explicit negative ionic charge. iv) Positive ionic (P) : Atoms with an explicit positive ionic charge. v) Electron-withdrawing (W) : Non-ionic atoms. vi) miscellaneous (X) : All other types of atoms 

To develop the QSAR model, van der Waals models of the aligned training set molecules were placed in a regular grid of cubes, with each cube allotted zero or more ‘‘bits’’ to account for different types of atoms in the training set that occupy the cube. This representation gives rise to binary valued occupation patterns that can be used as independent variables to create partial least-squares (PLS) QSAR models14. Atom-based QSAR models were generated for the selected hypothesis using the training set compounds with the help of a grid spacing of 1.0 A°. The best QSAR models were validated by predictive activities of the test set compounds. A model with four and three PLS factors were considered as the best statistical models for the enzymatic and cellular inhibitory activities, respectively. The maximum number of PLS factors in each model can be 1/5 the total number of training set molecules since further increase in the number of PLS factors did improve the model statistics or predictive ability.  RESULTS AND DISCUSSION  A 3D-QSAR study was successfully performed on the series of biphenyl derivatives of benzimidazole to understand the effect of spatial arrangement of structural features on anti-mycobacterium activities (MABA). Results of the 3D-QSAR are presented in Figure 3. The blue cubes of the 3D pharmacophore regions refer to ligand regions in which the specific feature is vital for activity, whereas the red cubes demonstrate that particular structural feature or functional group is not essential for the activity or likely a reason for decreased binding potential.
 Table 4 Some anti-tubercular molecules designed with  3D QSAR model with their predicted activities  

  S.No. Compound X R Predicted Activity pIC50 FOR STRUCTURE-I 1. S1 NHCO 4-OH 0.007446 2. S2 NHCO 4-OMe 1.376751 3. S3 NHCO 4-CF3 1.283997 
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4. S4 NHCO 4-SMe 1.124939 5. S5 NHCO 4-NH2 -0.05308 6. S6 NHCO 4-OCF3 1.19382 7. S7 NHCO 4-CONH2 -0.19396 8. S8 NHCO 4-CONHPh 1.187087 9. S9 NHCO 4-SO2Me 0.099633 10. S10 NHCO 4-CN 1.346787 11. S11 NHCO 4-COMe 1.148742 12. S12 NHCO 4-NHSO2Me -0.35083 13. S13 NHCO 4-Nmorpholine -0.69478 14. S14 NHCO 2-Me,4-F 1.060481 15. S15 NHCO 2-Me,4-CF3 0.754487 16. S16 NHCO 2-Me,4-CN 0.779892 17. S17 NHCO 2-Me,4-OMe 0.777284 18. S18 NHCO 2-Me,4-OCF3 0.943095 19. S19 NHCO 2-iPr,4-F 0.844664 20. S20 NHCO 2-iPr,4-CF3 0.90309 21. S21 NHCO 2-iPr,4-CN 1.031517 22. S22 NHCO 2-iPr,4-OMe 1.008774 23. S23 NHCO 2-iPr,4-OCF3 -0.086 24. S24 NHCO 3-F,4-F -0.13354 25. S25 NHCO 3-F,4-CF3 1.481486 26. S26 NHCO 3-F,4-CN 1.173925 27. S27 NHCO 3-F,4-OMe 1.431798 28. S28 NHCO 3-F,4-OCF3 1.49485 29. S29 SCH2 4-F -0.59028 30. S30 SCH2 4-CF3 -0.50987 31. S31 SCH2 4-CN -0.54876 32. S32 SCH2 4-OMe -0.5027 33. S33 SCH2 4-OCF3 -0.47451 34. S34 NHCH2 4-F -0.4553 35. S35 NHCH2 4-CF3 -0.43823 36. S36 NHCH2 4-CN -0.39602 37. S37 NHCH2 4-OMe -0.31408 38. S38 NHCH2 4-OCF3 -0.29579 39. S39 OCH2 4-F -0.0976 40. S40 OCH2 4-CF3 -0.05269 41. S41 OCH2 4-CN 0.049149 42. S42 OCH2 4-OMe 0.126098 43. S43 OCH2 4-OCF3 0.187755 FOR STRUCTURE-II 44. S44 NHCO 4-F -0.25091 45. S45 NHCO 4-CF3 -0.2927 46. S46 NHCO 4-CN -0.24527 47. S47 NHCO 4-OMe -0.23578 48. S48 NHCO 4-OCF3 -0.08493 49. S49 SCH2 4-F -0.52401 50. S50 SCH2 4-CF3 -0.59824 51. S51 SCH2 4-CN -0.62459 52. S52 SCH2 4-OMe -0.65571 53. S53 SCH2 4-OCF3 -0.44451 54. S54 NHCH2 4-F -0.40432 55. S55 NHCH2 4-CF3 0.012334 56. S56 NHCH2 4-CN -0.52789 57. S57 NHCH2 4-OMe -0.38596 58. S58 NHCH2 4-OCF3 -0.46195 59. S59 OCH2 4-F 1.142668 60. S60 OCH2 4-CF3 1.21467 61. S61 OCH2 4-CN 1.49485 62. S62 OCH2 4-OMe 1.283997 63. S63 OCH2 4-OCF3 1.19382 64. S64 OCH2 3-F,4-F 0.906578 65. S65 OCH2 3-F,4-CF3 1.408935 66. S66 OCH2 3-F,4-CN 1.251812 67. S67 OCH2 3-F,4-OMe 1.552842 68. S68 OCH2 3-F,4-OCF3 1.455932 FOR STRUCTURE-III 69. S69 NHCO 4-F -0.08458 70. S70 NHCO 4-CF3 0.133713 71. S71 NHCO 4-CN 0.66354 72. S72 NHCO 4-OMe 1.031517 73. S73 NHCO 4-OCF3 1.004365 74. S74 NHCO 4-Nmorpholine -0.37051 75. S75 NHCO 4-Nthiomorpholine -0.5858 76. S76 NHCO 4-NHSO2Me -0.05154 77. S77 NHCO 3-F,4-F 0.136083 78. S78 NHCO 3-F,4-CF3 0.567031 79. S79 NHCO 3-F,4-CN 0.790485 
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80. S80 NHCO 3-F,4-OMe 0.140261 81. S81 NHCO 3-F,4-OCF3 0.939302 FOR STRUCTURE-IV 82. S82 OCH2 4-F 1.207608 83. S83 OCH2 4-CF3 1.481486 84. S84 OCH2 4-CN 1.537602 85. S85 OCH2 4-OMe 1.259637 86. S86 OCH2 4-OCF3 1.207608 87. S87 OCH2 4-Nmorpholine -0.25091 88. S88 OCH2 4-Nthiomorpholine -0.2971 89 S89 OCH2 4-NHSO2Me -0.1209 90. S90 OCH2 3-F,4-F -0.06221 91. S91 OCH2 3-F,4-CF3 1.142668 92. S92 OCH2 3-F,4-CN 1.236572 93. S93 OCH2 3-F,4-OMe 1.200659 94. S94 OCH2 3-F,4-OCF3 1.148742  The reliability of the present 3D-QSAR analyses can be justified by the fact that all statistical measures are at significant level. Ninety-nine percentage variance of the model signifies agreement between the observed and predicted activity. The fitness graph is presented in Figure 4. Observed and predicted activity data are summarized in Table 3. Validity of the model can be expressed by internal predictivity (q2 = 0.8759), which is obtained by leave one out (LOO) method. Higher value of F (99.6) is indicative of statistically significant regression model, which is supported by the small value of the variance ratio (P), an indication of a high degree of confidence. Lesser values of standard deviation for the regression (0.145) and RMSE (0.4795) further make an implication that the data used for model generation is best for the QSAR analysis. Apart from the above-mentioned features, PLS factor also confirms the reliability of the model. In the present study PLS factor was taken as 5 and for each increment it gives one equation. In addition to the above parameters it is interesting to note that active ligands are closely fitted to the regression line and inactive ligands are scattered. 3D-pharmacophore regions around compounds are shown in Figure 3. Blue and red cubes represent 

favorable and unfavorable regions respectively, for the selected pharmacophore. Figure 3A represents electron-withdrawing characteristic for the AARR.325 hypothesis. Visual analysis of the Figure 3A demonstrates the throng of the blue cubes around aryl ring site suggesting that electron-withdrawing groups are favorable for MABA inhibitory activity i.e., the addition of electron-withdrawing groups at this site will lead to increased MABA inhibition like compounds S2, S3. Figure 3B illustrates H-donor characteristics of the hypothesis. Red cubes near the ring B of biphenyl side chain suggests that addition of hydrogen bond donor groups (NH2, OH, CONH2) will  lead to  poor binding to the receptor (compound S1, S5 and S7). It is interesting to note here that some of the blue cubes are also present near imidazole ring which shows that free NH group in the imidazole ring is also favorable. Figure 3C demonstrates the effect of positive and negative hydrophobic potential. Hydrophobic groups are well tolerated at the extreme end of biphenyl side chain (S2, S3 and S6), while hydrophilic groups are not favorable (S9, S12 and S13). Also Figure 3D shows negative ionic groups at the terminals are favorable for the inhibitory activity. 

  Figure 4 Fitness Graph between observed activity versus predicted activity  for training and test set compound for AARR.325 hypothesis  
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  Figure 5 Alignment of ligands to the pharmacophore  Table 4 shows a comparison of all of the NHCO, SCH2, NHCH2 and OCH2-linked analogues of structure I and structure II bearing the same substituents on the terminal ring. The SAR studies reveal that NHCO and OCH2 bridge is optimal for greater activity for analogues of structure I and structure II respectively. This is demonstrated that single aryl ring analogues bearing the same substituents on the terminal ring are notably poor while some analogues retain activity in case of S83, S84. The active alignment of the dataset is presented in Figure 5.  CONCLUSION  The pharmacophore based 3D QSAR analysis using 79 PA-824 derivatives was used to build statistically robust hypothesis model with good correlative and predictive capability of anti-TB activity.  The 3D-QSAR model discussed above explains how electron withdrawing, hydrophobic, and H-donor properties should be modified 

to achieve better anti-TB activity. The hypothesis model results were statistically significant (q2 >0.7 and r2>0.8). The q2, r2, and other parameter values are in an acceptable criterion for statistical validity and allow for the assumption of a significant QSAR model. The analysis of pharmacophore generated has provided many clues about the structural requirement for the observed biological activity. To add further, the OH, NH2 and CONH2Ph groups should be avoided at para position and lipophilicity is significant factor for further improvement. Based on pharmacophore model and structural insights, a series of new biphenyl analogues of benzimidazole were designed and the anti-mycobacterial activities of the designed compounds were predicted based on the best 3D-QSAR model. Compounds with best predicted activity will be synthesized and evaluated in laboratory for their anti-mycobacterial activity. This analysis could be help in the rational design of potential drug candidates with an enhanced inhibitory potency.   ACKNOWLEDGMENTS  The authors wish to acknowledge the team of Schrödinger for providing software facility, Jubilant Chemsys for providing NOC, infrastructure and facility to carry out this work and also to Dr. Gireesh 
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