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ABSTRACT 
 

Hepatocarcinoma (HCC) and colorectal cancer (CRC) are the most malignant tumors with increasing 
incidences of morbidity and mortality globally.The aim of the present study was to determine in vitro anti-
tumor activity of quercetin, gallic acid, and ellagic acid against HCC and CRC. This was achieved through 
testing the effects of these compounds on HepG2 and HCT 116 cells, ranging from cell growth inhibition 
assay and fold dose advantage, passing by mitochondrial activity assessment, to cellular protein content 
measurement. The efficacies of these compounds were compared with doxorubicin in case of HepG2 
cells and 5-fluorouracil in case of HCT 116 cells. The present findings indicated that in both cell types, 
gallic acid elicited the most pronounced anti-cancer activity and mitochondrial dysfunction compared to 
quercetin and ellagic acid. Extensive research is warranted to assess the precise molecular mechanisms 
of these natural products in bridling HCC and CRC. 
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INTRODUCTION 
 
Cancer is an uncontrolled cell growth that may invade surrounding tissues and migrate to other parts of the body.

1 

Hepatocarcinoma (HCC) is one of the most malignant tumors with a high mortality globally.
2 

Meanwhile, colorectal 
cancer (CRC) has been steadily increasing with high incidences in developing nations.

3 
Nowadays, thus natural 

products have been receiving increased attention in research work and clinical studies in the field of cancer as a result 
of the remarkable adverse effects of the currently available chemotherapy.

4,5 
The potential effects of these products 

may ultimately suppress cancer growth, angiogenesis, and metastasis without any side effects.
6 

Quercetin has been 
found to cause cell cycle arrest in different cancer cells, as it can modulate some of signaling cascades in some 
transduction pathways associated with apoptosis (caspases 3, caspases 9, and B-cell lymphoma 2 "Bcl-2") and cell 
survival (mitogen-activated protein kinase "MAPK" and protein kinase B "PKB", also known as "Akt") processes in 
acute myeloid leukemia and human gastric cancer cells.

7-8 
Therefore, quercetin may be a good chemopreventive and 

therapeutic agent in cancer.
9 

Gallic acid has strong antioxidant anti-inflammatory and anti-cancer properties. In 
presence of metal ions, it has pro-oxidant property in concentration dependent manner which induces the apoptotic 
signaling pathway in cancerous cells.

10
 Moreover, it has been revealed that matrix metalloproteinase-2 (MMP-2) and 

MMP-9 proteolytic activities were inhibited via gallic acid.
11 

Ellagic acid has been found to have strong anticancer 
activity.

12
 3,3'-Di-O-methyl ellagic acid-4'-O-β-d-xylopyranoside (JNE2), an ellagic acid derivative, could inhibit the 

proliferation of HepG2 cells.
13

  Specifically, JNE2 inhibited the proliferation of HepG2 cells and blocked cell cycle at 
the G1/S phase via the down regulation of G1/S-specific cyclin-D1 (CCND1). A high dosage of JNE2 persuaded 
apoptosis of the cancer cells through  upregulation of the protein expression of Bcl-2-associated X protein (Bax) and 
caspase-3, and downregulation of the protein expression of Bcl-2, which is a key regulator of apoptosis that 
associated with the mitochondrion.

14-15 
Therefore, it was dedicated that JNE2 acts on controlling of this apoptotic ratio 

between Bcl-2 and Bax genes.
13 

This study was planned to explore the anti-cancer activity of quercetin, gallic acid, 
and ellagic acid in vitro. Cytotoxic capacity, mitochondrial activity, and cellular protein contents have been evaluated 
for HepG2 and HCT116 treated cells versus untreated cells. Also, the efficacies of these compounds were compared 
with doxorubicin and 5-fluorouracil in case of HepG2 and HCT 116 cells respectively. 
 

MATERIALS AND METHODS 
 
Cell lines 
Human hepatocellular carcinoma and colorectal cell lines (HepG2 and HCT 116 cells) were purchased from 
VACSERA (Egypt) which purchased them from American Type Culture Collection (ATCC, USA).  
 
Compounds and chemicals 
Quercetin>95% (HPLC), solid (Q4951), gallic acid 97.5-102.5% (titration) (G7384), ellagic acid 95% (HPLC) powder, 
Roswell Park Memorial Institute Medium (RPMI-1640), Dulbecco's Modified Eagle Medium (DMEM), L-glutamine, 
Doxorubicin (DOX), 5-fluorouracil (5-FU), dimethyl sulfoxide (DMSO), and 3-[4,5-dimethylthiazol-2-yl]-2,5 
diphenyltetrazolium bromide (MTT) were purchased from (Sigma, St Louis, MO, USA).Trypsin-EDTA was purchased 
from (Lonza, USA). Fetal calf serum and penicillin/streptomycin were purchased from (Wexford, Ireland). 
Sulphorhodamine-B (SRB) was purchased from Duchefa-Biochemie (Haarlem, Amsterdam, Netherlands). All reagents 
and chemicals used for analysis met the quality criteria in accordance with international standards. 
 
In vitro studies 
Cell propagation and maintenance  
HepG2 cells were propagated in the proper conditions (at 37ºC and 5% CO2) and maintained in RPMI-1640 with 1% 
L-glutamine and supplemented with 10% fetal calf serum for growth and 1% penicillin/streptomycin. Meanwhile, HCT 
116 cells were cultured and propagated in a C-DMEM. When the cells are approximately 80% confluent, they were 
subcultured using Trypsin-EDTA. Second round of HepG2 and HCT 116 cells subculturing was used for 96-well plates 
seed in gand thereafter drug screening. 
 
Growth inhibition assay 
The cytotoxic effects of the pure compounds (quercetin, gallic acid, and ellagic acid) as well as the standard anti-
cancer drugs, doxorubicin (DOX) and 5-fluorouracil (5-FU), at the concentrations (0, 6.25, 12.5, 25, 50 and 100 µM) 
were investigated on HepG2 and HCT 116 human cancer cell lines using the sulphorhodamine-B (SRB) assay.

16 

Briefly, the cells were seeded in 96 well microtiter plates at a concentration of 5000 cells/well and left for cell 
attachment on the plate for 24 h in 5% CO2 at 37°C. After 24 h, cells were incubated for 48 h with various 
concentrations of the pure compounds as well as the standard anti-cancer drugs (0, 6.25, 12.5, 25, 50 and 100 
µM).Following 48 h treatment, the medium were discarded, the cells were fixed with 10% trichloroacetic acid (TCA) 
150 µl/well for 1 h at 4°C (TCA reduce SRB protein binding). Then, the cells were washed with distilled water 3 times. 
Wells were stained for 30 min at room temperature with 50 µL of 0.4% SRB dissolved in 1% acetic acid at room 
temperature (25 ± 2°C) and kept in dark place. After incubation, the SRB solution was poured off and the plates were 
washed with 1% acetic acid to remove unbound dye and to leave only the cell adhered dye. Then, the plates were air 
dried and the dye was solubilized with 150 µl/well of 10 mM tris base solution (PH 7.4), and the mixture was shaken 
for 5 min at room temperature (25 ± 2°C). The optical density (OD) of each well was measured spectrophotometrically 



 

Int J Pharm Bio Sci 2016 Oct ; 7(4 ): (B) 584 - 592  
 

 

This article can be downloaded from www.ijpbs.net 

B - 586 

 

at 545 and 600 nm with an ELISA microplate reader. The experiment was performed in triplicate and the percentages 

of cell viability were calculated.  
 
The half inhibitory concentration (IC50) and fold change 
The half maximal inhibitory concentration (IC50) values representing the concentrations that inhibit 50% of cell viability 
were obtained by plotting the percentages of cell viability versus the concentrations of the sample using polynomial 
concentration–response curve fitting models (Origin Pro 8 Software). Finally, the fold change of compounds 
(quercetin, gallic acid, and ellagic acid) versus DOX in case of HepG2 cells and 5-FU in case of HCT 116 cells were 
calculated as well. 
 
Mitochondrial activity measurements 
The 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide (MTT) from (Sigma, St Louis, MO, USA) is based on 
the conversion of MTT into formazan crystals by living cells, which determines mitochondrial activity.

17 
The effects of 

the studied compounds as well as the standard anti-cancer drugs (DOX and 5-FU) on the mitochondrial activity were 
estimated by MTT assay using HepG2 and HCT 116 cells. Briefly, the cells were cultured in 96-well plates at a density 
of 1×10

4
 cells/well. 0, 25, 50, 100 µM of the compounds as well as DOX and 5-FU were added per well in RPMI-1640 

(HepG2 cells) and DMEM (HCT 116 cells). Also, media without drug was used as control. After 1 day incubation, MTT 
dissolved in PBS was added to each well at a final concentration of 5 mg/ml, and the samples were incubated at 37°C 
for 4 h. Water-insoluble crystals of formazan that formed during MTT cleavage in actively metabolizing cells were then 
dissolved in dimethyl sulfoxide (DMSO) using 100 µl/well. Absorbance was measured at 455 nm, using a microplate 
reader (Model 500; BIORed Instrument Inc., USA). The mitochondrial activity (%) was calculated and compared with 
the control.  
 
Cellular protein measurements 
The protein content of HepG2 and HCT 116 cells upon treatments with the tested compounds, DOX, and 5-FU was 
measured according to the previously optimized method.

18 
Basically, sulforhodamine B, the protein dye, binds 

electrostatically and pH dependent on protein basic amino acid residues of trichloroacetic acid-fixed HepG2 and HCT 
116 cells. After incubation with the compounds, cell monolayers are fixed with 10% (wt/vol) trichloroacetic acid and 
stained for 30 min with SRB, after which the excess dye is removed by washing repeatedly with 1% (vol/vol) acetic 
acid. The protein-bound dye is dissolved in 10 mM Tris base solution and observed at 510 nm using a microplate 
ELISA reader.  
 
Statistical analysis 
The results were presented as the mean of three independent experiments and the standard deviation (SE). One way 
analysis of variance (ANOVA) was used for the analysis of the test results at the significance level of p-value <0.05. 
The IC50 was obtained using polynomial concentration–response curve fitting models (Origin Pro 8 software). 
 

RESULTS 
  

HepG2 cells inhibition 
The cytotoxicity of each compound as well as the standard anti-tumor drug; doxorubicin (DOX) was investigated 
against liver cancer HepG2 cell line at different doses (0, 6.25, 12.5, 25, 50 and 100 µM) using SRB technique. Data 
illustrated in (Fig. 1a) show the viability percentage of HepG2 cells after 48h from treatment with different 
concentrations of the tested compounds versus controls. These data revealed that the treatment of HepG2 cells with 
6.25 µM of DOX significantly decreased cell viability to 66.43% (P < 0.01), whereas cells treated with 12.5 and 25 µM 
of doxorubicin showed significant decrease in cell viability to 58.87% and 54.80% respectively (P < 0.01). 
Furthermore, treatment of HepG2 cells with 50 and 100 µM of DOX produced significant decrease in cell viability to 
48.77% and 45.83%, respectively (P < 0.01). These results revealed a dose dependent effect in cell growth of HepG2 
cells after DOX treatment, with an IC50 value equal 33.06 µM at 48 h (Fig. 2a). On the other side, HepG2 cells treated 
with 6.25, 12.5 and 25 µM of quercetin showed after 48h significant decrease in cell viability to 25.05%, 20.52% and 
18.57% respectively (P < 0.01). While, treatment of cells with 50 and 100 µM of quercetin caused significant decrease 
(P < 0.01) in cell viability to 17.96% and 4.91% respectively (Fig. 1a). These data suggested a dose dependent effect 
in cell proliferation of HepG2 cells after quercetin treatment, with an IC50 value equal 7.10 µM at 48 h (Fig. 2a) and fold 
dose advantage of quercetin versus DOX equal 4.65 (Fig. 2b).Treatment of HepG2 cell line with 6.25 µM of gallic acid 
significantly decreased cell viability to 7.65% (P < 0.01); whereas, cells treated with 12.5 and 25 µM of gallic acid 
showed significant decrease in cell growth to 6.37% and 4.98% respectively (P < 0.01). In addition, treatment of 
HepG2 cell line with 50 and 100 µM of gallic acid produced significant decrease (P < 0.01) in cell viability to 3.22% 
and 3.01% respectively (Fig. 1a). These observations revealed a dose dependent decrease in HepG2 cell viability 
after treatment with gallic acid, with an IC50 value equal 2.60 µM at 48 h (Fig. 2a) and fold dose advantage of gallic 
acid versus DOX equal 12.67 (Fig. 2b). At the same line, liver cancer HepG2 cells treated with 6.25, 12.5 and 25 µM 
of ellagic acid showed after 48h significant decrease (P < 0.01) in cell viability to 38.55%, 32.46% and 27.40% 
respectively. Whilst, treatment of cells with 50 and 100 µM of ellagic acid caused significant decrease (P < 0.01) in 
HepG2 cell viability to 23.93% and 9.07% respectively (Fig. 1a). These results showed a dose dependent decrease in 
HepG2 cell viability after ellagic acid treatment, with an IC50 value equal 11.86 µM at 48 h (Fig. 2a) and fold dose 
advantage of ellagic acid versus DOX equal 2.78 (Fig. 2b). 
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HCT 116 cells inhibition 
The cytotoxicity of each compound under study as well as the commercially available drug; 5-Fluorouracil (5-FU) was 
investigated against colorectal cancerous HCT 116 cell line at concentrations (0, 6.25, 12.5, 25, 50 and 100 µM) using 
SRB method. Data illustrated in (Fig. 1b) show the percentage of viability of colon cancer HCT 116 cells 48h post-
treatment with different concentrations of the tested compounds versus controls. These observations revealed that 
treatment of HCT 116 cells with 6.25 and 12.5 µM of 5-FU significantly decreased cell viability to 69.62% and 64% 
respectively (P < 0.05). Whereas, cells treated with 25, 50 and 100 µM of 5-FU showed significant decrease in cell 
viability to 57.87%, 57.37% and 53.37%, respectively (P < 0.01). These results revealed a gradual dose decrease in 
HCT 116 cell viability post-treatment with 5-FU, with an IC50 value equal 46.13 µM at 48 h. At the same time, HCT 116 
cells treated with 6.25, 12.5 and 25 µM of quercet in showed after 48h significant decrease in cell viability to 34.44%, 
33.58% and 30.38% respectively (P < 0.01). While, treatment of cells with 50 and 100 µM of quercetin caused 
significant (P < 0.01) decrease in HCT 116 cell viability to 25.41% and 5.85% respectively (Fig. 1b). These data 
showed a gradual dose decrease in HCT 116 cell viability after quercetin therapy, with an IC50 value equal 11.94 µM 
at 48 h (Fig. 2a) and fold dose advantage of quercetin versus 5-FU equal 3.86 (Fig. 2b). Treatment of HCT 116 cells 
with 6.25 µM of gallic acid significantly decreased (P < 0.01) cell viability to 22.87% whereas cells treated with 12.5 
and 25 µM of gallic acid showed significant decrease (P < 0.01) in cell viability to 8.19% and 7.63% respectively. 
Likewise, treatment of HCT 116 cells with 50 and 100 µM of gallic acid produced significant (P < 0.01) decrease in 
HCT 116 cell viability to 6.29% and 5.93% respectively (Fig. 1b). These results revealed a dose dependent decrease 
in HCT 116 cell viability of after incubation with gallic acid, with an IC50 value equal 4.94 µM at 48 h (Fig. 2a) and fold 
dose advantage of gallic acid versus 5-FU equal 9.32 (Fig. 2b). On the other side, HCT 116 cells treated with 6.25, 
12.5 and 25 µM of ellagic acid showed after 48h significant decrease (P < 0.01) in HCT 116 cell viability to 50.45%, 
49.20% and 48.0% respectively. Whereas, treatment of cells with 50 and 100 µM of ellagic acid caused significant (P 
< 0.01) decrease in HCT 116 cell viability to 47.83% and 44.27% respectively (Fig. 1b). These observations suggested 
a gradual dose dependent decrease in HCT 116 cell viability after ellagic acid treatment, with an IC50 value equal 
25.19 µMat 48 h (Fig. 2a) and fold dose advantage of ellagic acid versus 5-FU equal 1.83 (Fig. 2b). 
 

 
 

 
 

Figures 1 
Growth inhibition of HepG2 cells (a) and HCT 116 cells (b) using SRB-based cytotoxic 

drug screening assays of quercetin, gallic acid, and ellagic acid versus DOX (a) and 5-FU (b) (n=3). 
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Figures 2 

The half maximal inhibitory concentrations (IC50) (a) and fold change (b) of quercetin, 
gallic acid, and ellagic acid versus DOX in case of HepG2 cells and 5-FU in case of HCT  

116 cells (n=3).Mitochondrial activity 
 

The results in Fig. 3, show the effect of quercetin, gallic acid, and ellagic acid versus DOX on mitochondrial activityof 
human HepG2 cells as well as versus 5-FU on mitochondrial activity of human ofhuman HCT 116 cells. Interestingly, 
gallic acid, compared to quercetin and ellagic acid, produced remarkably superior effects at 25, 50, and 100 µM (P < 
0.05). On the other side, quercetin, compared to ellagic acid, reduces the cellular mitochondrial activity of HCT 116 
cells at 25, 50, and 100 µM concentrations and HepG2 cells at 100 µM concentration, meanwhile the effect of ellagic 
acid exceeds quercetin at 25 and 50 µM concentrations. 
 

 
 

 
 

Figures 3 
HepG2 (a) and HCT 116 (b) cellular mitochondrial activities using MTT-based 

assays of quercetin, gallic acid, and ellagic acid (n=3). 
 
 



 

Int J Pharm Bio Sci 2016 Oct ; 7(4 ): (B) 584 - 592  
 

 

This article can be downloaded from www.ijpbs.net 

B - 589 

 

Cellular protein content screening  
We measured the protein content in HepG2 and HCT 116 treated with the studied compounds, DOX and 5-FU. The 
lower the cellular protein content, the higher the cytotoxic effect of the compound. This is due to the SRB dye binds to 
the amino acid residues of the trichloroacetic acid-fixed cells. Hence, we recorded that gallic acid had the lowest 
cellular protein contents and the highest cytotoxic effect compared to quercetin and ellagic acid against both HepG2 
and HCT 116 cells (Fig. 4). 
 

 
 

 
 

Figures 4 
HepG2 (a) and HCT 116 (b) cellular protein contents of quercetin, gallic acid, and ellagic acid versus DOX in 

case of HepG2 cells (a) and 5-FU in case of HCT 116 cells (b) (n=3). Doses ranging from 0 to 20, 20 to 40, 40 to 
60, 60 to 80, and 80 to 100 µM versus quercetin, gallic acid, ellagic acid, and DOX/5-FU were used to illustrate 

the cellular protein content of either HepG2 or HCT116 cancer cell lines. 
 

DISCUSSION                                                                                                           
 

The current study clarified that gallic acid then quercetin elicited the most pronounced anti-cancer activity and 
cytotoxic effect on HepG2 and HCT 116 cell lines compared to ellagic acid, DOX, and 5-FU. This is in agreement with 
the previous studies indicated that gallic acid possesses cytotoxic possessions in several cancer cell lines and can 
selectively induce cancer-mediated apoptosis without harming healthy cells.

11,19-21 
Moreover, the in vitro 

antiproliferative activity of gallic acid from methanol extract of Morus alba has been documented to induce cytotoxicity 
in human colon cancer cell line (HCT-15).

22 
Moreover, gallic acid could induce apoptosis and inhibit transcription 

factors that endorse cell existence and spread. In particular, it could suppress NF-κB, AP-1, STAT-1, and octamer-1 
(OCT-1) inhibition which are known to be activated in CRC. In addition, it was found to decrease Caco-2 cell viability, 
arrest the cell cycle at G0 /G1, and persuade apoptotic cell death. The stimulation of the apoptotic pathway by gallic 
acid was shown by the triggering of caspase-3 and it also caused DNA destruction and nuclear condensation.

23 

Regarding quercetin, aubiquitous bioactive flavonoid, in vitro experiments have demonstrated that it constrains cell 
spread and persuades apoptosis in various types of tumor cells via diverse signaling pathways.

24-25 
It could induce cell 

growth inhibition and apoptosis in a variety of cancer cells.
9 

Quercetin has a clearly cytotoxic effect on HepG2 cells 
and it causes a 4- to 5-fold increase of LDH liberation into the culture medium on HepG2 indicating a significant 
cytotoxicity in HepG2 culture.

26
 The anticarcinogenicity of quercetin includes inhibition of cell proliferation through 

induction of cell cycle arrest and/or apoptosis.
27 

Moreover, querecetin has been reported to have generalized growth 
inhibitory effect as well as antigenotoxic and antiproliferative effects in HepG2 and several other cell lines.

28-

29
Mechanistically, various signaling pathways have been suggested for quercetin’s anti-tumor activity, including 

inhibition of glycolysis, up-regulation of cell cycle inhibitors such as p21WAF1 and p27KIP1, and down-regulation of 
oncogene expression.

30 
Also, quercetin could activate AMP-activated protein kinase (AMPK).

31-32
 As several studies 

have been demonstrated that tumor suppressor proteins, including liver kinase B1 (LKB1), tuberous sclerosis 2 
(TSC2), and p53, are associated with the AMPK pathway.

33
 Therefore, AMPK initiation by quercetin may link with 

mediating cell cycle/ apoptosis of cancer cells.
31-32  

The inhibitory effect of quercetin on NF-κB transcription factor in 
turn regulates the expression of other proteins that control cell growth as well as cell cycle regulators or anti-apoptotic 
proteins.

34
 It was also verified that mitochondria seems to be a crucial target for quercetin, causing a disruption in the 
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mitochondrial membrane potential (MMP).
35

 NF-κB factor promotes proliferation and cell survival by enhancing the 
expression of several genes including Bcl-2, B-cell lymphoma 2 extra-large (Bcl-XL), cellular inhibitor of apoptosis 
(cIAP), survivin and TNF receptor associated factor (TRAF). The proteins coded by those genes actmainly by 
interfering with one of the apoptotic elements. As a consequence, the natural suppression of NF-κB leads to an 
abrogation of proliferation which allows cells to come into the death pathways.

34 
On the other hand, the present study 

results showed that ellagic acid enhanced significant cytotoxic effects on HepG2 and HCT 116 cell lines compared to 
DOX and 5-FU respectively. Ellagic acid, a type of polyphenols that widely exist in herbs, fruits, and nuts, has recently 
gained increasing attention. It has been well established that ellagic acid exhibits anticancer and antimutagen, as well 
as others.

36-37 
A number of antitumor agents activate mitochondria-arbitrated apoptosis in cancerous cells via the 

downregulation of Bcl-2 and Bcl-xL or the upregulation of Bax, Bad, and Bid. The caspase-3 expression was noticed 
in HepG2 cells following therapy with an ellagic acid derivative and the upregulated influence was investigated.

13 

These results said that it persuaded the apoptosis of human liver cancerous HepG2 cells throughout the mitochondrial 
pathway. Caspase-3 is elaborated in apoptosis persuaded by Bcl-2/Bax, p38 and Janus-kinase-signal transducer and 
activator of transcription (JAK-STAT).

38-39 
Additionally, it has been revealed that ellagic acid decreases viable cell 

number of human colon tumor cells.
40 

Moreover, ellagic acid has previously been shown to enhance antitumorigenic 
characterization like induction of apoptotic pathways and cell cycle arrest.

41-42
 It has been shown that ellagic acid is a 

strong antiproliferative, apoptotic and antioxidant influences which may be an appliance whereby they inhibit cancer 
cell propagation and activate cancer cell death through apoptosis.

40  
DOX exhibits significant cytotoxic effect on 

HepG2 cell line and it could be attributed to its ability to activate c-jun N-terminal kinase (JNK) and CHOP signalling 
pathways.

43-44
 Turning on these stress pathways activates the proapoptotic Bcl-2 family protein "Bim" through elevated 

gene expression and/or phosphorylation, leading to mitochondrial cell death.
45

 Also, 5-FU produced significant 
cytotoxic effect on HCT 116 cell line. This is expected since 5-FU is known to interfere with the metabolism of 
nucleoside which can be incorporated into the RNA and DNA. Furthermore, 5-FU inhibits deoxythymidine 
monophosphate (dTMP) production when converted instead to fluorodeoxyuridine monophosphate to form a stable 
complex with thymidylate synthase. Since dTMP is essential for DNA replication and repair, inhibition of its production 
may cause cell death.

46 
In accordance with these facts, our data depicted that DOX and 5-FU decreased HepG2 and 

HCT 116 cells viability, but not as significance as the studied pure compounds. In fact, the natural products can 
modulate various molecular pathways involved in hepatocellular carcinoma and colon cancers initiation and 
progression for tackling cancerous cells, while leaving normal cells. It is expected that studies with natural products 
will define various targets for tumor growth inhibition and apoptosis. To date, chemotherapies in many post-clinical 
studies with natural compounds directed against hepatic and colorectal cancerous cells are unfortunately very limited. 
In the present study, gallic acid, quercetin, and ellagic acid proved their activity as cytotoxic mediators against HepG2 
and HCT 116 cell lines compared to DOX and 5-FU as standard anticancer agents. Further research is warranted to 
identify the specificity and target ability, as well as precise molecular mechanisms of these natural compounds against 
hepatocellular carcinoma and colon cancers, while sparing non-cancerous/normal cells healthy. 
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