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ABSTRACT 
 

Cerebral Ischemia (stroke) is one of the foremost causes of high morbidity and mortality for 
both developed and developing countries. Cerebral ischemia impairs the normal neurological 
functions which are triggered by a complex series of biochemical and molecular mechanism. 
Understanding of mechanisms of injury and neuroprotection in this disease is important to learn new 
target sites to treat ischemia. In this article, there is clear understanding of ischemic cascade followed 
by the mechanism of all damaging factors like energy failure, excitotoxicity, oxidative stress, 
neuroinflammation, cell death modes: necrosis, apoptosis along with histological changes. Further it 
also discloses the different epidemiology based on the age, gender and races along with current 
status of the prevalence in India in comparison with western world. The present authors also describe 
and relate aponecrosis and necroptosis with cerebral ischemia. The main emphasis is given and 
described along with diagrammatic view. 
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ABBREVIATIONS 

 
AIF: Apoptosis Inducing Factor; AMPA: α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate; APAF-
1: Apoptotic Proteases-Activating Factor – 1; ATP: Adenosine Try Phosphate; CINC: Cytokine-
induced neutrophil chemoattractant; DD:  Death Domains; Diablo: Direct IAP-Binding Protein with 
Low pI; DISC: Death Inducing Signaling Complex; DRs:  Death Receptors; FADD:  Fas-Associated 
Death Domain; IAPs:  Inhibitors of Apoptotic Proteins; ILs: Interleukins; LTD: long term depression; 
LTP: Long Term Potentiation; MCAO: Middle Cerebral Artery Occlusion; MCP-1: Monocyte 
chemoattractant protein–1; MPT: Mitochondrial Permeability Transition; Nec-1: Necrostatin-1; NF-κB: 
Nuclear Factor kappa B; NMDA: N-methyl-D-Aspartic Acid; nNOS: Neuronal Nitric Oxide Synthase; 
PARP: Poly ADP Ribose polymerase; PMN: Polymorphonuclear; RIP: Receptor interacting proteins; 
ROS: Reactive Oxygen Species; Smac:  Second Mitochondrial-Derived Activator of Caspases; SOD:  
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Superoxide Dismutase; TGF: Tumor Growth Factor; TNF: Tumor Necrosis Factor; TRADD: TNF-
receptor Associated Death Domain. 
 

INTRODUCTION 

 
Stroke is a major cause of death and long 

term disability across the globe. WHO defined 
stroke as ‘rapidly developed clinical signs of focal 
disturbance of cerebral function, lasting more 
than 24 hrs or leading to death, with no apparent 
cause other than vascular origin’ 1,2. Cerebral 
stroke, besides fatality, is the most common 
cause of disability leading to dependency, crucial 
both from economic and humanitarian point of 
view. In the western world stroke is the third 
leading cause of death next to heart diseases 
and cancer3. From the early 1970s to early 
1990s, the estimated number of 
noninstitutionalized stroke survivors increased 
from 1.5 million to 2.4 million 4. Around total 
number of 1 million cases has been reported in 
the India related to stroke. The changing pattern 
of disease occurring in India due to efforts in 
control of communicable disease have brought in 
a sharp focus,  stroke as one of the major health 
problems. Around 12% of all strokes occur in 
population below 40 years 5. 

Cerebral ischemic stroke is a neurological 
disease where neuronal cell death is caused by a 
serial pathophysiological events, so called 
‘ischemic cascade’ like energy failure, 
excitotoxicity, oxidative stress, inflammation, 
apoptosis etc. These all damaging factors are 
triggered by decreased/blocked blood flow 6,7. 
The authors review the progression, 
understanding and mechanism at cellular levels 
of all the above devastating events which are 
results of declined blood supply that leads to 
neuronal cell death in cerebral ischemic stroke. 
The present article further deals with 
epidemiology (global vis-à-vis Indian) and the 
pathophysiological aspects of ischemic stroke. 

 
WHAT IS CEREBRAL STROKE? 

 

Stroke occurs due to sudden interruption 
of blood supply (normally caused by a thrombus 

or embolus occlusion or hemorrhage due to 
rupture of blood vessel) to a part of brain 
results in disruption of neurologic functioning. 
In stroke, the oxygen supply to the brain gets 
impaired which finally leads to death of 
neuronal cells 8,9. 

For the first time in 1847, Rudolf 
Virchow introduced the concept that systemic 
emboli lodging in the cerebrovasculature and 
vascular occlusion cause stroke, but the 
therapeutic implications of this notion were not 
fully implemented until more than a century 
later 10,11,12. 

 
SYMPTOMS 

  
Symptoms of stroke includes vertigo, 

sensory loss, nystagmus, anopia, facial 
numbness, ataxia, disphagia, dysarthria, 
ophthalmoplegia, hemiparesis, arm & leg 
paralysis, amnesia, color amnesia, abulia, 
alexia, urinary incontinence, or coma, 
depending on arterial territory involved. Major 
disability is loss of ability to communicate, 
ambulate, co-ordinate and reason. Many risk 
factors are identified as the probable cause for 
ischemia. Several factors may play role in the 
development of stroke such as environmental 
factors (e.g. smoking, alcohol consumption, 
oral contraceptives, diet etc.), comorbidities 
(e.g. hypertension, coronary heart diseases, 
atrial fibrillation, aneurysm, asteriovenous 
malformation, atherosclerosis, diabetes 
mellitus, etc.) and genetic factors (e.g. age, 
race etc.). 13,14 

 
FACTORS 

 
The non-modifiable factors include age, 

gender, positive family history, ethnicity, 
previous transient ischemic attack or stroke 
whereas the modifiable factors include 
hypertension, diabetes, smoking, lipid 
disorders – hypercholesterolemia, alcohol 
intoxication and physical inactivity 15. 
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CLASSIFICATION OF CEREBRAL 

STROKE  

 
Stroke basically classified in to two categories; 
Occlusive and hemorrhagic 

Occlusive or ischemic stroke in which the 
disrupted blood supply is caused by a blocked 
blood vessel. This results in formation of an 
embolus or thrombus that occludes an artery.  In 
thrombotic stroke, a blood clot (thrombus) forms 
inside an artery such as internal carotid artery, 
proximal and intracranial vertebral arteries or 
basilar artery, produces lacunes, small infarcts to 
typical locations include basal ganglia, thalamus, 
internal capsule, pons and cerebellum. Embolic 
stroke occurs when a clot breaks, loose and is 
carried by the blood stream and gets wedged in 
medium-sized branching arteries 16,17. 

Hemorrhage in which the disrupted blood 
supply is caused by rupture of an extracerebral 
artery. Eighty percent of stroke are ischemic and 
include thrombotic and embolic stroke 18,19. 

 

RISK FACTORS 

 
Advanced age (>65 years old), Family 

history,  Male gender, African American, 
Hypertension, Diabetes, Smoking, Cerebral 
amyloidosis, Coagulopathies, Anticoagulant 
therapy, Thrombolytic therapy for acute 
myocardial infarction (MI) and acute ischemic 
stroke (can iatrogenically cause a hemorrhagic 
stroke), Drug abuse (cocaine or other 
sympathomimetic drugs), Bleeding due to a brain 
tumor, Atherosclerosis, Heart disease (atrial 
fibrillation, coronary artery disease, dilated 
cardiomyopathy, left ventricular hypertrophy), 

Hyperlipidemia, Hyperhomocysteinemia, Birth 
control pills, Hyperviscosity (polycythemia, 
dehydration, sickle cell anemia), Prior transient 
ischemic attack (TIA), Heavy alcohol 
consumption, Vascular malformations 
(aneurysms), Pregnancy/childbirth, Menopause 
20,21,22,23,24. 

 

COMPLICATIONS 

Stroke complications can include sleep 
problems, confusion, depression, incontinence, 
atelectasis, pneumonia, and swallowing 
dysfunction, which can lead to aspiration, 
dehydration, or under nutrition. Immobility can 
lead to thromboembolic disease, 
deconditioning, sarcopenia, UTIs, pressure 
ulcers, and contractures. Daily functioning 
(including the ability to walk, see, feel, 
remember, think, and speak) may be 
decreased 25,26. 

 

EPIDEMIOLOGY 

 

Worldwide Incidence In 80% of the cases 
Ischemic attacks results from atherosclerotic 
cerebral thrombotic events. Risk of stroke in 
the first year following ischemic attacks is 
about 10%. On average, every 45 seconds 
someone in the United States has a stroke. In 
the US, ischemic attacks affects at least 
200,000 to 500,00 persons per year 
Population-based studies have reported little 
change in ischemic attacks incidence during 
the past few decades, suggesting that the 
prevalence of atherosclerosis, the most 
common mechanism of ischemic attacks, has 
not changed 27,28. 
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Figure 1. 

 Global Prevalence of Different Kinds of Cerebral Stroke. 
 
 

Mortality Stroke accounted for about one of 
every 15 deaths in the United States in 2003. 
About 50 percent of these deaths occurred out of 
hospital. Stroke as an underlying or contributing 
cause of death about 273,000. On average, 
about every three minutes someone dies of a 
stroke. 8 to 12 percent of ischemic strokes and 
37 to 38 percent of hemorrhagic strokes result in 
death within 30 days. From 1993–2003, the 
stroke death rate fell 18.5 percent, and the actual 
number of stroke deaths declined 0.7 percent. 
The 2003 overall death rate for stroke was 54.3. 
Death rates were 51.9 for white males and 78.8 
for black males; and 50.5 for white females and 
69.1 for black females. Because women live 
longer than men, more women than men die of 
stroke each year. Women accounted for 61.0 
percent of U.S. stroke deaths in 2003 29,30,31. 

Age and Gender Each year about 46,000 
more women than men have a stroke. Men’s 
stroke incidence rates are 1.25 times greater 
than women’s. The difference in incidence rates 

between the sexes is somewhat larger at 
younger ages but nonexistent at older ages. 
The male/ female incidence was 1.59 for ages 
65–69; 1.46 for ages 70–74; 1.35 for ages 75–
79 and 0.74 for age 80 and older. In a large, 
prospective, population-based study, the 
average age at first presentation with the 
ischemic attacks was 74 years; men with new 
Ischemic attacks were significantly younger 
than were women (mean age, 71 vs. 76 years, 
respectively)32,33. 

Race Blacks have almost twice the risk of 
first-ever stroke compared with whites. The 
age-adjusted stroke incidence rates (per 
100,000) for first-ever strokes are 167 for white 
males, 138 for white females, 323 for black 
males and 260 for black females. Whites are 
twice as likely as blacks to have extracranial 
lesions. Prevalence of intracranial lesions is 
similar in both groups 34. 
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Figure 2. 

 Epidemiology of Cerebral Ischemia Based On Age and Gender. 
 

 

INDIAN SCENARIO 

 
Incidence  There is a need to take stern steps to 
collect data on morbidity and mortality due to 
stroke because the India is ranked among the 
countries where the information on stroke is 
minimal. Several population-based surveys on 
stroke were conducted from different parts of 
India. During the last decade, the age-adjusted 
prevalence rate of stroke was between 250-
350/100,000. Recent studies showed that the age-
adjusted annual incidence rate was 105/100,000 
in the urban community of Kolkata and 
262/100,000 in a rural community of Bengal. The 
ratio of cerebral infarct to hemorrhage was 2.21. 
Hypertension was the most important risk factor. 
Stroke represented 1.2% of total deaths in India. A 
comprehensive 5-year prospective study on stroke 
is currently under way in the city of Kolkata where 
both the stroke survivors and the stroke death 
cases are being captured giving the true estimate 
of stroke incidence rates 35,36. 
 
Mortality Rate There were limited data 
available on stroke related mortality in India. 
Although medical certification of the cause of 

death is a legal requirement, only 13.5% of all 
deaths in India were medically certified in 
1994. Therefore ascertainment of the cause of 
death was grossly inadequate in India. 
However, it was estimated that stroke 
represented 1.2 % of the total deaths in the 
country, when all ages were included. The 
proportion of stroke death increased with age, 
and in the oldest group (> 70 years of age) 
stroke contributed to 2.4% of all deaths. The 
gender ratio of death due to stroke was 1.24 
One would expect a high mortality of stroke 
with low prevalence and median annual 
incidence of stroke in India 37,38. 
 
THE WHOLE CASCADE OF 

ISCHEMIC BRAIN INJURY 

 
The process of reduction of blood and glucose 
supply produces brain injury via a variety of 
cellular and molecular mechanisms that impair 
the energetic required to maintain ionic 
gradients39.40. The mechanisms involve a 
complex series of pathophysiological events 
that are dependent on the severity, duration, 
and location of the ischemia within the brain. 
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Within minutes of vascular occlusion, brain tissue 
is deprived of glucose and oxygen and the acidic 
by-products start accumulating 41,42. This loss of 
nutrients and decrease in pH levels lead to 
cessation of the electron transport chain activity 
within mitochondria resulting in a rapid decline in 
ATP concentration 43,44. This failure of energy 
homeostasis is the first event that occurs in stroke. 
Due to ATP loss, it causes disruption of ionic 
pumps systems like Na+-K+-ATPase, Ca2+-H+ 
ATPase, reversal of Na+-Ca2+ transporter resulting 
in increase in intracellular Na+, Ca2+, Cl- 
concentration and efflux of K+ 45,46. This 
redistribution of ions across plasma membrane 
causes neuronal depolarization, leading to excess 
release of neurotransmitters, in general and 
glutamate in particular that causes neuronal 
excitotoxicity 47,48. Glutamate causes excessive 
increase in Ca2+ concentration into nerve cells 
through overactivation of their receptors which 
then triggers a variety of processes that can lead 
to necrosis and apoptosis 49,50. The processes 
include Ca2+ overload of mitochondria, oxygen free 
radical formation and activation of caspases-9,3,8, 
BAD, BAX, & calpains resulting in oxidative stress 
and apoptosis respectively 51,52. 

Ca2+ dependent activation of nNOS 
(neuronal nitric oxide synthase), leading to 
increased NO production and formation of toxic 
peroxynitrite (ONOO-) contributes to oxidative 
stress and excitotoxicity 53,54,55. Also upregulation 

of a variety of enzyme systems such as 
lipases, proteases, phosphatases, kinases and 
endonucleases activate various inflammatory 
molecules like cytokines and interleukins (ILs) 
56,57 such as TNF-α, NF-κB that results in 
neuroinflammation 58. As there is excessive 
influx of Na+ and Ca2+ & efflux of K+ and 
recruitment of inflammatory mediators like 
leukocytes 59,60 & adhesion molecules, it 
causes fluid accumulation at injury site 
resulting in edema formation 61,62. All these 
damaging factors lead to irreversible final event 
in cerebral ischemic stroke i.e. the death of 
neuron cells and also irreversible loss of 
neurological function including cognitive 
functions 63,64 . The mechanism of ischemic 
stroke development is summarized below 
(Figure 3). 
The ischemic injury depends on the intensity of 
ischemic insult. The major events that follow 
during ischemia: energy failure, glutamate 
mediated excitotoxicity, generation of free 
radicals (oxidative stress), neurovascular 
pathophysiology & inflammation, cell death 
mode: necrosis, apoptosis and 
neuromodulation are discussed in detail in the 
text below. Each of the above processes has a 
distinct time frame, some occurring over 
minutes, others over hours and days. These 
processes share overlapping and redundant 
features. 
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Figure 3. 

 Pictorial Representation of Cerebral Ischemic Cascade. 
 
 

Cerebral Ischemia and Energy Failure  
The maintenance of cellular energy reserves is 
vital for cellular survival. The brain has low levels 
of stored glycogen and is highly dependent on 
oxidative metabolism 65,66. The coenzyme NAD+, a 
parent compound to NADH, NADP, and NADPH, 
is an important contributor to ATP production. 
Cellular NAD+ holds a key position in the control of 
fundamental cell processes as it is the major 
donor of electrons for mitochondrial electron 
transport to power oxidative phosphorylation. 
Mitochondrial NAD+ gets rapidly depleted during 
ischemia; and also ATP levels become lowered 
67,68. This decreased ATP, reduced NAD+ stimulate 
mitochondrial permeability transition (MPT), 
means mitochondria becomes freely permeable to 
low MW solutes. The transition causes 
mitochondrial depolarization, uncoupling and 

inhibition of oxidative phosphorylation with 
stimulation of mitochondrial ROS generation, 
mitochondrial swelling 69,70, and release of 
intramitochondrial solutes into the cytosol such 
as cytochrome-c, second mitochondrial-derived 
activator of caspases (SMAC), direct IAP-
binding protein with low pI (DIABLO), apoptosis 
inducing factor (AIF). MPT is an attractive 
hypothesis because it takes into account the 
multiple injury mechanisms are known to be 
activated during ischemia and reperfusion 71,72. 
 
Cerebral Ischemia and Excitotoxicity  
Excitotoxicity, the term coined by Olney in 
1969, occurs due to excess release of 
excitatory amino acid glutamate and excessive 
activation of their receptors. During acute and 
chronic ischemia, disruption of energy 
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metabolism impairs the clearance of glutamate 
due to transporter dysfunction. Also ATP depletion 
causes neuronal membrane depolarization, which 
opens voltage-gated Ca2+ and Na+ channels and 
releases excitatory glutamate 73,74,75. Under 
ischemic conditions, glutamate is massively 
released (initially mediated by vesicular release 
from nerve terminals, and later by reverse 
transport from astrocytes). Unfortunately, such 
concentrations of glutamate are neurotoxic. 
Excess Glutamate release causes overactivation 

of NMDA, AMPA and kainate receptors and 
results into excessive influx of Ca2+, Na+. Ca2+ 
overloads mitochondria results in free radical 
production, activation of inflammatory 
mediators that contributes to neuronal injury 
and cell death 76,77,78. Marked neuronal cell 
body swelling and dendrite swelling occur, 
hallmarks of necrosis death, as Na+ and Ca2+ 
entry is joined by the influx of Cl- and water 
79,80,81,82. 

 

 
 

Figure 4. 
Dominance of Death Factors over Survival Factors, Activated during Cerebral Ischemic Stroke: During ischemic 

insult, both death as well as cell survival components get activated but among them death factors takes over 
survival factors. Therefore leads to neuronal cell death. 

 

Cerebral Ischemia and Oxidative Stress 
Normally oxidative stress is being caused by the 
imbalance between free radical production and 
degradation. Brain is most susceptible to oxidative 
stress due to large consumption of oxygen 83,84,85. 
Natural formation of oxidants during mitochondrial 
electron transport, auto-oxidation of some 
neurotransmitters (e.g. norepinephrine, dopamine) 
and in ischemic attacks of events during ischemia 

can result in oxidant formation and subsequent 
tissue damage 86,87. Superoxide and nitric oxide 
have important roles in health, serving as 
regulators of blood flow and neurotransmission. 

Oxidative stress can be traced primarily to 
formation of these molecules. Pathologic 
consequences results due to alteration in the 
activities of these molecules 88,89. 
Leakage during mitochondrial electron 
transport, altered mitochondrial metabolism 

and inflammatory responses to injury leads to 
superoxide production 90,91,92. Defense 
mechanism of Brain against superoxide 
includes dietary free-radical scavengers 
(ascorbate, α-tocopherol), the endogenous 
tripeptide glutathione, and enzymatic 
antioxidants. Enzymatic antioxidants regulate 
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superoxide concentration by dismutation of 
superoxide to hydrogen peroxide (superoxide 
dismutase or SOD), which is then converted to 
water (peroxidases such as glutathione peroxidase 
and peroxiredoxin) or dismuted to water and 
oxygen (Catalase) 93,94,95. Ischemia can also 
induce increased expression of these enzymes. In 
ischemia endogenous antioxidant capacity can be 
overwhelmed, leading to increased superoxide and 
hydrogen peroxide concentrations 96,97.  
Production of nitric oxide formation is both 
constitutive and inducible during ischemia 98,99,100. 
Overproduction of Ischemia-induced nitric oxide 
can also be caused by glutamatergic-mediated 

increases in intracellular calcium concentration, 
resulting in a calmodulin-dependent upregulation 
of nitric oxide synthase (NOS) 101,102. Nitric oxide 
can be consumed by reacting with hemoglobin. 
Flavohemoglobin-based enzymes (nitric oxide 
reductase, nitric oxide dioxygenase) capable of 

specifically metabolizing nitric oxide have been 
identified in mammalian cells. Reaction with 

superoxide yielding peroxynitrite is a well 
known non-enzymatic mechanism which 
regulates nitric oxide concentration 103,104. 
In accordance with excessive nitric oxide 

production, nitrosative damage can also 
aggravate via independent nitrosylation of 
protein heme sites (e.g. cytochrome c) or 
through its reaction products with oxygen or 
other nitrogen oxides 105,106,107. Superoxide can 
cause oxidative damage of iron/sulfur clusters 
of aconitase, an important enzyme in the 
tricarboxylic acid cycle 108,109. Superoxide can 
also participate in the peroxynitrite formation 
and can be involved in the iron-catalyzed 
Haber–Weiss reaction which causes the 
conversion of hydrogen peroxide to be 
hydroxyl radical. Hydroxyl radical, peroxynitrite 
and peroxynitrite-derived products (hydroxyl 
radical, carbonate radical and nitrogen dioxide) 

all have the potential to react with and damage 
most cellular targets including lipids, proteins 
and DNA 110,111. 

 
 

 
 

Figure 5. 
 Generation of Free Radicals in Cerebral Ischemic Stroke. 
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Cerebral Ischemia and Neuroinflammation 
 
Few hours after the onset of ischemia, tissue 
injury begins with an inflammatory reaction, which 
is a common response of the cerebral 
parenchyma to various forms of insult 112,113. This 
requires the infiltration of leukocytes, both 
polymorphonuclear (PMN) leukocytes and 
monocytes/macrophages (but not lymphocytes), 
which are the cellular mediators of subsequent 
microvessel obstruction, edema formation, cellular 
necrosis, and tissue infarction 114,115. 
This inflammatory injury is induced by certain 
molecules includes cell adhesion molecules 
(selectins, integrins, and immunoglobulins), 
cytokines (IL-1, IL-6, TNF-α, and TGF-β) 116,117, 
Chemokines (CINC, MCP-1), inducible neuronal 
nitric oxide synthase (iNOS) produced by 
endothelial cells, activated astrocytes 118,119, 
microglial cells and leukocytes (granulocytes, 
monocyte/macrophages, and lymphocytes) and 
these all contribute to irreversible damage 120,121.  

Cell adhesion molecules mediate cell to cell 
interaction for leukocyte migration. The 
recruitment of neutrophils to ischemic brain begins 
with neutrophil rolling on activated endothelial 
blood vessel walls, mediated by selectins, followed 
by neutrophil activation and adherence, mediated 
by integrins and immunoglobins 122,123,. When 
adhered to cerebral blood vessel walls, neutrophils 
transmigrate into the cerebral parenchyma, a 
process facilitated by blood brain barrier (BBB) 
disruption. The recruitment of neutrophils can 
obstruct the microcirculation and prevent complete 
restoration of cerebral blood flow after reperfusion 
124. This blockage may cause further tissue 
damage after ischemia. Once neutrophils 
penetrate into ischemic brain they cause tissue 
damage by releasing oxygen free radicals and 
proteolytic enzymes. Further, Selectins are 
glycoproteins and comprised by P-, E-, and L-
selectin. Members of the immunoglobulin 
supergene family, composed of Intracellular 
adhesion molecule (ICAM-1 and ICAM-2), 
vascular cell adhesion molecule–1 (VCAM-1; 
CD106), platelet-endothelial cell adhesion 
molecule–1 (CD31), mucosal addressin cell 

adhesion molecule–1 (CD146) and are 
expressed on activated endothelial cells 125,126. 

Cytokines and Chemokines also 
contribute to stroke related brain injury. During 
ischemia, cytokines, such as interleukins (IL-1, 
IL-6), Tumor necrosis factor (TNF-α, TGF-β) 
and Chemokines such as Cytokine-induced 
neutrophil chemoattractant (CINC) and 
Monocyte chemoattractant protein–1 (MCP-1) 
are produced by a variety of activated cell 
types, including endothelial cells, microglia, 
neurons, platelets, leukocytes, and fibroblasts 
127,128.  The possible deleterious effects of IL-1 
include fever, arachidonic acid release; 
enhancement of NMDA mediated excitotoxicity 
and stimulation of nitric oxide synthesis. Both 
IL-1, TNF-α induces adhesion molecule 
expression in cerebral endothelial cells and 
promotes neutrophil accumulation and 
transmigration. In addition TNF-α stimulates 
acute-phase protein production, disrupts the 
blood-brain barrier and stimulates the induction 
of other inflammatory mediators. But TGF-β 
plays a neuroprotective role in the 
pathogenesis of stroke 129,130,131. 
 
Ischemic Cell Death 
Ischemia develops two zones around the site 
of blocked blood supply 
(thrombosis/embolism). Brain cells at the 
center of ischemic region where the cerebral 
circulation is completely arrested, this region 
called as core, irreversible cell damage occurs 
in several minutes132. In the periphery of this 
ischemic area, where collateral blood flow can 
buffer the full effects of the stroke, this region 
called as penumbra, the degree of ischemia 
and the timing of reperfusion determine the 
fate of individual cells133. The reduced blood 
flow falls to the level below the threshold for 
electrical failure and above the threshold for 
energy failure. Restoration of cerebral blood 
flow, even to a sub-optimal level, provides an 
opportunity for those brain cells to recover and 
regain functionality 134. 
This infarction region has remarkably 
difference in the process of cellular injury and 
death 135. There appear two major modes of 
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cell death that participate in ischemic cell death: 
necrosis and apoptosis. Necrosis as passive 
degeneration resulting in cellular dissolution when 
the internal homeostasis collapses. Apoptosis 
meaning active cellular suicide occurring during 
normal development and also being triggered by 
physiological stimuli 136. Aponecrosis is another 
term given to apoptosis and necrosis in the brain 
infarction which seem like the two poles of a 
continuum of cellular death after ischemic stroke. 
While necrosis is more dominant in the core 
tissue, penumbral cells die by means of either 
mode, with apoptosis being more common for 
cells further away from the core 137. 
 
Mechanisms of Necrotic Cell Death 

Various morphological changes leading to 
necrosis includes swelling with blebbing of the 
cell surface, dilation of the endoplasmic 
reticulum, increased mitochondrial density, and 
flocculation of the nuclear chromatin which 
turns into irreversible cell swelling with 
mitochondrial dilation that results in rupture of 
nuclear membranes 138,139. Before the loss of 
all basophilia, the marginated chromatin 
appears as small discrete masses. These 
changes, rupture of other organelle 
membranes and breakdown of plasma 
membrane makes cell boundaries indistinct 
followed by development of exudative 
inflammation in the adjoining viable tissue, and 
the debris is ingested and degraded by 
phagocytes 140,141.  

 

 
 

Figure 6. 
 Basic Characteristics of Ischemic Cell Death Modes: Necrosis and Apoptosis. 

 
Mechanisms of Apoptotic Cell Death  
Term apoptosis was coined by John Kerr and his 
group in 1972 which is a regulated and 
programmed phenomenon responsible for the 
maintenance of homeostasis of multicellular 
system that requires a various factors 142,143. This 

process is involved in many biological events 
like development, differentiation, proliferation, 
immune system, and also removal of defective 
& harmful cells. Apoptosis means a program 
that triggered for death of a cell. Many of the 
key molecular events have determined in 
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cerebral ischemia like free radicals, Ca2+ 
overload mitochondria, excitotoxicity that initiates 
programmed cell death in many cells 144,145. It is 
characterized by a series of well defined distinct 
morphological and biochemical changes that 
proceeds through progressive steps to avoid 
leakage of potentially harmful intracellular 
contents146,147. Mitochondria acts as reservoir for 
multiple apoptogenic proteins such as 
cytochrome c, SMAC/DIABLO, AIF, 
Endonuleases and procaspases -2,3,8,9. 
Cytochrome is released from mitochondria along 
with all other apoptogenic proteins which are 
involved in formation of apoptosome with 
apoptotic proteases-activating factor – 1 (APAF-
1) and procaspase – 9. This activates Caspases 
– 9 that further cleaves and activates 
downstream Caspases such as caspase – 3,6,7. 
These Caspases degrades their substrates like 
endonucleases, lamin, spectrin, huntingtin, 
gelsolin, PARP, etc 148,149. 
Also, there is activation of Death receptors (DRs) 
of TNF receptor family presents on cell surface 
150. These have specific death domains (DD) like 
TNF-receptor associated death domain (TRADD) 
or Fas-associated death domain (FADD) to which 
ligand binding promotes death inducing signaling 
complex (DISC) 151. This also involves the 
activation of Bid, Bax. Another caspase 
independent and self destructive mechanism of 
cell death involves a novel apoptotic effector 

protein called AIF that resides in inner 
membrane space of mitochondria. This is 
responsible for chromatin condensation and 
large scale DNA fragmentation 152,153. 

Cysteine Aspartate Specific Proteinases 
also known as Caspases, the central 
molecules involved in initiation and execution 
of apoptosis 154. The Caspase family is broadly 
divided into two categories: CED subfamily are 
activated during apoptosis constitute Caspases 
– 2,3,6,7,8,10 and ICE/Caspases –1 subfamily 
undergo activation during inflammatory 
responses constitute Caspases –1,4,5,11,12. 
Moreover, apoptotic Caspases can be further 
divided into initiating Caspases (-2,8,9,10,12, 
responsible for initiating the apoptosis) and 
effector Caspases (-3,6,7, actually involved in 
dismantling the cell) 155,156. 

 
Endogenous Inhibitors of Apoptosis:  Along 
with activation of proapoptotic proteins, there is 
also activation of inhibitors of apoptotic 
proteins (IAPs) 157,158. Both balance and 
maintain the homeostasis of cell death. IAPs 
constitute a family of death suppressing 
proteins like c-IAP1, C-IAP2, X-linked IAP 
(XIAP) and surviving. Besides all these, certain 
heat shock proteins (HSPs) also interact with 
APaf 1 and preventing the constitution of 
apoptosome and subsequent caspase-9 
activation 159,160. 
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Figure 7. 
 Schematic Presentation of Apoptotic Cell Death. 

 

NECROPTOSIS 

 
Necroptosis is recently described by Degterev 
et al. (2005) as a series of pathway involving 
substantially non-apoptotic components that 
are involved in neuronal cell death which is 
caused by ischemic injury 161,162. These involve 
death receptor mediated pathways of apoptosis 
that are followed by activation of Caspase-8. 
Further, in addition to initiation by death 
receptors they can also precede thro; RIP 
(Receptor interacting proteins) which 
differentiates this from death receptor pathway 
of apoptosis. RIP is a serine/threonine kinase 
and identified as a Fas-interacting protein, 
known to contain 3-domains named as N-
terminal domain, C-terminal domain & an 
intermediate domain 163,164. These domains 
bind to a TRADD, a TNF receptor I (TNFRI) 
associated cytoplasmic adapter protein which 
induces apoptosis indicating that RIP is a 
component of the TNFRI signaling complex. 
Three isoforms of RIP family have been 
identified, RIP2 (also known as 

CARDIAK/RICK), RIP3 and RIP4 (also known 
as DIK/PKK) 165. An inhibitor of necroptosis, 
Necrostatin-1 (Nec-1) reported by Degterev et 
al. (2005) is shown to have good results in 
reducing the infarct volume and improving 
neurologic score resulting from MCAo mice. 
Therefore, necroptosis offers a new possibility 
to provide a new target of neuroprotection 
166,167. 
 
CHANGES IN NEUROTRANSMITTERS 

AND NEUROACTIVE SUBSTANCES 

 
As stated by Durukan (2007), after postmortem 
(by immunohistochemical staining techniques) 
and in vivo (by microdialysis) evaluation of 
neurochemical changes in stroke induced 
animals that aspartate, glutamate, inosine, 
hypoxanthine, adenosine and γ-amino butyrate 
increases in the acute ischemic period 168,169 

and glycine seems to increase with prolonged 
ischemia. Also there are some neuroactive 
substances like tyrosine hydroxylase, 
neuropeptide Y which increase in peri-infarct 
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region 170,171, but some substances like 
neuropeptide Y, leuenkephalin, neurotensin, 
and dynorphin get increased in nuclei of 
amygdale which are not infarcted. Similar 
results have been achieved with microdialysis 
method applied to patients with large MCA 
infarction 172,173,. 
In most of the cases, the ischemic injury is 
reported to induce mild to severe permanent 
deficits174,175. Inspite of the increased level of 
these molecules, such level is further 
insufficient to produce its protective effects and 
to maintain normal physiology of brain 176,177. 
There are other neurotransmitters (like 
dopamine, acetylcholine etc.) which gets 
decreased so as to maintain and regulate the 
normal behavior like coagulation, motor co-
ordinations, active response to any stimuli etc. 
Among these neurotransmitters, acetylcholine 
has greatest amount in brain neuronal system 
and is also widely available178,179. Both, 
dopaminergic as well as acetylcholinergic 
neurotransmission critically modulates synaptic 
transmission and plasticity. In particular, 
acetylcholine acting at nicotinic and muscarinic 
receptors deeply influences the induction of 
LTP (Long Term Potentiation) and LTD (long 
term depression) in striatum, hippocampus and 
notably in several areas of brain implied in 
reward mechanisms. A wide range of 
attentional processes are mediated by forebrain 
cholinergic system180,181,182. Further, Dopamine 
critically regulates neuronal transmission and 
plasticity at cortico-striatal synapses, whose 
activity is crucial during formation of habits and 
skills. LTP is dopamine dependent in prefrontal 
cortex, hippocampus, and amygdale. Dopamine 
also involves in coordinating the movements of 
whole body skeletal muscles because it 
receives the stimuli in first nuclei (nigrostriatum) 
of basal ganglia where it balances with 
acetylcholine and send stimuli further to other 
nucleus 183,184.  
 
Histopathological Changes in 
Cerebral Ischemia  
Ischemic changes in cell architecture begin so 
rapidly that the brain interstitial space almost 

completely disappears within the few seconds 
of the onset of cerebral ischemia. Loss of 
interstitial space is a consequence of cell 
swelling secondary to sodium influx and failure 
of membrane ionic regulation185,186. 
 
After 10 minutes: A significant number of cells 
show clumping of nuclear chromatin and a 
modest increase in electron lucency after 10 
minutes of GCI 187. 
 
After 30 minutes: Further changes after 30 
minutes include increased cytoplasmic 
swelling, swelling and shape change of the 
mitochondria, and some loss of mitochondrial 
matrix density. Microtubules disappear 188 and 
there is detachment of the ribosomes from the 
cisternae of the endoplasmic reticulum. There 
is also disassociation of the polyribosomes, 
and single ribosomes lose their compact 
structure with associated failure of protein 
synthesis 189.  
 
After 60 minutes: One hour after GCI, the 
above changes have become more 
pronounced with more conspicuous swelling of 
the ER cisternae. The mitochondria begin to 
show slight inner matrix swelling and 
occasional flocculent densities 190.  
 
After 120 minutes: Within 2-4 hours of GCI, 
the changes discussed above are more 
pronounced and a larger number of 
mitochondria exhibit the presence of flocculent 
densities evidencing calcium overload which is 
currently considered irreversible191. Published 
electron micrographs reveal intact lysosomes 
and seem to confirm other studies which 
indicate that lysosomal rupture and subsequent 
catastrophic autolysis is not a feature of early 
(1 - 4 hours) ischemic injury 192. 
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